1. bookVolume 10 (2017): Issue 1 (April 2017)
Journal Details
License
Format
Journal
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
access type Open Access

Molecular orbital analysis of selected organic p-type and n-type conducting small molecules

Published Online: 23 Jun 2017
Page range: 6 - 16
Journal Details
License
Format
Journal
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English

In this article, the selected series of commercially available p-type and n-type semiconducting small molecules are systematically studied by density functional theory using the B3LYP hybrid functional and 6-311G(2d,p) basis set. The optimal geometries of each molecule in the electronic neutral and corresponding charged states are calculated. The evaluated energies of frontier molecular orbitals and electronic band gaps are mutually compared together with adiabatic electronic intramolecular reorganization energies. The chemical accuracy of the evaluated theoretical quantities is estimated from the comparison with available experimental data.

Keywords

Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38: 3098-3100.Search in Google Scholar

Beu T, Onoe J, Hida A (2005) First-principles calculations of the electronic structure of one-dimensional C60 polymers. Phys. Rev. B 72: 155416.Search in Google Scholar

Brédas J-L, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in pi-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 104 (11): 4971.Search in Google Scholar

Brütting W (2005) Organic Semiconductors. University of Augsburg, Germany.Search in Google Scholar

Cornill J, Brédas J-L, Zaumseil J, Sirringhaus H (2007) Ambipolar transport in organic conjugated materials. Adv. Mat. 19 (14): 1791-1799.Search in Google Scholar

Filo J, Putala M (2010) Semiconducting organic molecular materials. Journal of Electrical Engineering, Vol. 61, No. 5: 314-320.Search in Google Scholar

Flukiger P, Luthi HP, Sortmann S, Weber J (2002) Molekel 4.3, Swiss NationalSupercomputing Centre, Manno, Switzerland.Search in Google Scholar

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 Revision C.01, Gaussian, Inc., Wallingford, CT.Search in Google Scholar

Hariharan PC, Pople JA (1973) The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theoret. Chimica Acta 28: 213-222.Search in Google Scholar

Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys. Rev. 136: B864-B871.Search in Google Scholar

Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37: 785-789.Search in Google Scholar

Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65: 599.Search in Google Scholar

McCormick TM, Bridges CR, Carrera EI, DiCarmine PM, Gibson GL, Hollinger J, Kozycz LM, Seferos DS (2013) Conjugated Polymers: Evaluating DFT Methods for More Accurate Orbital Energy Modeling. Macromolecules 46: 3879-3886.Search in Google Scholar

Norton JE, Brédas J-L (2008) Polarization energies in oligoacene semiconductor crystals. J. Am. Chem. Soc. 130 (37): 12377-84.Search in Google Scholar

Olivier Y, Lemaur V, Bredas J-L, Cornil J (2006) Charge Hopping in Organic Semiconductors: Influence of Molecular Parameters on Macroscopic Mobilities in Model One-Dimensional Stacks. J. Phys. Chem. A 110 (19): 6356.Search in Google Scholar

Rassolov V, Pople JA, Ratner M, Windus TL (1998) 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 109: 1223-1229.Search in Google Scholar

Reiss P, Couderc E, De Girolamo J, Pron A (2011) Conjugated polymers/semiconductor nanocrystals hybrid materials-preparation, electrical transport properties and applications. Nanoscale 3: 446-489.Search in Google Scholar

Runge E, Gross EKU (1984) Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 52: 997-1000.Search in Google Scholar

Sawadogo R, Diendéré F, Guiguemdé I, Ouédraogo R, Sotiropoulos J-M (2016) Semiconducting Oligomers of 1,4-dimethoxybenzene, Thiophene and Thiazole: A Theoretical Study. ACSJ 17(1): 1-10.Search in Google Scholar

Sigma Aldrich (2017) Available on internet: http://www.sigmaaldrich.com/.Search in Google Scholar

Wang L, Li P, Xu B, Zhang H, Tian W (2014) The substituent effect on charge transport property of triisopropylsilylethynyl anthracene derivatives. Org. Electron. 15: 2476-2485.Search in Google Scholar

Yin SW, Yi YP, Li QX, Yu G, Liu YG, Shuai YG (2006) Balanced Carrier Transports of Electrons and Holes in Silole-Based Compounds. A Theoretical Study. J. Phys. Chem. A. 110: 7138.Search in Google Scholar

Zahn DRT, Gavrila GN, Gorgoi M (2006) The transport gap of organic semiconductors studied using the combination of direct and inverse photoemission. Chem. Phys. 325 (1): 99-112.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo