1. bookVolume 20 (2016): Issue 1 (April 2016)
Journal Details
License
Format
Journal
First Published
12 Mar 2016
Publication timeframe
1 time per year
Languages
English
access type Open Access

Effect of Cutting Speed and Depth on the Course of Resultant Force Acting on a Cultivator Tine

Published Online: 18 Jun 2016
Page range: 127 - 136
Received: 01 Aug 2015
Accepted: 01 Oct 2015
Journal Details
License
Format
Journal
First Published
12 Mar 2016
Publication timeframe
1 time per year
Languages
English
Abstract

The paper presents research results on the effect of cutting depth and speed on the resultant force tilt angle and location of its application point on a flexible tine ended with a cultivator point. The studies were carried out in field conditions in sandy clay with the gravimetric moisture of 11.2% and volumetric density of 1470 kg·m−3. Tines whose flexibility coefficient was 0.0061; 0.0711; 0.0953 and 0.1406 m·kN−1 were used. It was found out that that the resultant force tilt angle raises at the increase of the cutting speed and drops at the increase of depth but this angle and its gradient at the increase of the cutting depth grow along with the decrease of the flexibility coefficient of tines. The increase of the cutting speed and depth causes the decrease of both the distance of the resultant force application point on the tool from the bottom of a furrow and a proportion of this parameter to the cutting depth. The courses of the distance of the resultant force application point on the tool from the bottom of a furrow and courses of proportion of this parameter to the cutting depth as the function of cutting do not differ significantly for tines with higher flexibility coefficients while for the most rigid tine values of these parameters and their gradients are higher. All obtained courses of the analysed values as a function of depth and cutting speed were described with regression equations.

Keywords

ASABE, (2006). S313.3FEB04. Soil Cone Penetrometer. Mich: ASABE, St. Joseph, 902-904.Search in Google Scholar

Bernacki, H. (1981). Teoria i konstrukcja maszyn rolniczych. Tom 1, część I i II. PWRiL, Warszawa. ISBN 83-09-00419-2.Search in Google Scholar

Berntsen, R., Berre, B., Torp, T,, Aasen, H. (2006). Tine forces established by a two-level model and the draught requirement of rigid and flexible tines. Soil and Tillage Research, 90, 230-241.Search in Google Scholar

Chen, Y., Cavers, C., Tessier, S., Monero, F., Lobb, D. (2005). Short-term tillage effects on soil cone index and plant development in a poorly drained, heavy clay soil. Soil and Tillage Research, 82, 161-171.Search in Google Scholar

Friedman, M. (1973). Zemedelske stroje I. Teorie a vypoczet. Statni zemedelske nakladatelstvi, Praha.Search in Google Scholar

Godwin, R.J., Spoor, G. (1977). Soil failure with narrow tines. Journal of Agricultural Engineering Research, 22, 213-228.Search in Google Scholar

Godwin, R.J. (2007). A review of the effect of implement geometry on soil failure and implement forces. Soil & Tillage Research, 97, 331-340.Search in Google Scholar

Godwin, R.J., O’Dogherty, M.J. (2007). Integrated soil tillage force prediction models. Journal of Terramechanics, 44, 3-14.Search in Google Scholar

Kuczewski, J. (1981). Elementy teorii i obliczeń maszyn rolniczych. Skrypt SGGW, Warszawa. ISBN 83-00-01721-6.Search in Google Scholar

Lejman, K., Owsiak, Z., Pieczarka, K., Molendowski, F. (2015). Metodyczne aspekty wyznaczania parametrów przebiegu siły wypadkowej działającej na sprężynowe zęby kultywatora. Inżynieria Rolnicza, 4(156), 69-78.Search in Google Scholar

McKyes, E., Maswaure, J. (1997). Effect of design parameters of flat tillage tools on loosening of a clay soil. Soil & Tillage Research, 43, 195-204.Search in Google Scholar

Onwualu, A.P., Watts, K.C. (1998). Draught and vertical forces obtained from dynamic soil cutting by plane tillage tools. Soil & Tillage Research, 48, 239-253.Search in Google Scholar

Owsiak, Z., Lejman, K., Wołoszyn, M. (2006). Wpływ zmienności głębokości pracy narzędzia na opory skrawania gleby. Inżynieria Rolnicza, 4(79), 45-53.Search in Google Scholar

Pabin, J., Włodek, S., Biskupski, A. (2007). Fizyczne właściwości gleby i plony roślin w różnych systemach uprawy roli i ogniwach zmianowań. Zeszyty Problemowe Postępów Nauk Rolniczych, 520, 655-661.Search in Google Scholar

Piotrowska, E. (2003). Badania filmowe bryły glebowej odkształcanej przez wąskie narzędzie uprawowe. Inżynieria Rolnicza, 11(53), 173-178.Search in Google Scholar

Przybył, J., Kowalik, I., Dach, J., Zbytek, Z. (2009). Analiza jakości pracy agregatów do uprawy przedsiewnej. Journal of Research and Application in Agriculture Engineering, 4(54), 62-68.Search in Google Scholar

Talarczyk, W., Zbytek, Z., Gośliński, M. (2011). Ocena narzędzia przedniego stosowanego w zestawie uprawowo-siewnym. Journal of Research and Application in Agriculture Engineering, 4(56), 165-170.Search in Google Scholar

Topakci, M., Celik, H.K., Canakci, M., Rennie, A.E.W., Akinci, I., Karayel, D. (2010). Deep tillage tool optimization by means of finite element method: Case study for a subsoiler tine. Journal of Food, Agriculture & Environment, 2(8), 531-536.Search in Google Scholar

Ucgul, M., Fielke, J.M., Saunders, C. (2014). Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil. Biosystems Engineering, 121, 105-117.Search in Google Scholar

Wheeler, P.N., Godwin, R.J. (1996). Soil dynamics of single and multiple tines at speed up to 20 km/h. Journal of Agricultural Engineering Research, 63, 243-250.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo