1. bookVolume 23 (2019): Issue 3 (September 2019)
Journal Details
License
Format
Journal
First Published
12 Mar 2016
Publication timeframe
4 times per year
Languages
English
access type Open Access

Impact of Pressure on the Parameters of Pea Straw Compaction

Published Online: 29 Nov 2019
Page range: 79 - 87
Received: 01 Aug 2019
Accepted: 01 Sep 2019
Journal Details
License
Format
Journal
First Published
12 Mar 2016
Publication timeframe
4 times per year
Languages
English

This paper presents the results of pea straw compaction efficiency tests. The compliance of the tested material to pressure agglomeration was assessed depending on the compaction pressure used (45-113 MPa). The compaction was carried out using a Zwick testing machine, type Z020/TN2S, and a closed die pressing unit. It was found that, along with the pressure increase, the material density in the chamber increased (from 1.255 to 1.76 g∙cm−3), as well as the agglomerate's density (from 0.739 to 1.05 g∙cm−3) and the product's mechanical resistance (from 0.31 to 0.69 MPa). Increasing the compaction pressure in the analyzed range increased the unit value of compaction work, from 17.16 to 34.27 J·g−1.

Keywords

Adamczyk, F., Frąckowiak, P., Mielec, K., Kośmicki, Z. (2005). Problematyka badawcza w procesie zagęszczania słomy przeznaczonej na opał. Journal of Research and Application in Agricultural Engineering, 50(4), 5-8.Search in Google Scholar

Adamczyk, F., Frąckowiak, P., Mielec, K., Kośmicki, Z., Zielnica, M. (2006). Badania eksperymentalne procesu zagęszczania słomy metodą zwijania. Journal of Research and Application in Agricultural Engineering, 51(3), 5-10.Search in Google Scholar

Danish, Z., Wang, Z. (2019). Does biomass energy consumption help to control environmental pollution? Evidence from BRICS countries. Science of the Total Environment, 670, 1075-1083.Search in Google Scholar

Hejft, R. (2002). Ciśnieniowa aglomeracja materiałów roślinnych. Politechnika Białostocka. Wyd. i Zakład Poligrafii Instytutu Technologii Eksploatacji w Radomiu.Search in Google Scholar

Kulig, R., Skonecki, S. (2011). Wpływ wilgotności na parametry procesu zagęszczania wybranych roślin energetycznych. Acta Agrophysica, 17(2), 335-344.Search in Google Scholar

Kulig, R., Skonecki, S., Łysiak, G., Laskowski, J., Rudy, S., Krzykowski, A., Nadulski, R. (2013). The effect of pressure on the compaction parameters of oakwood sawdust enhanced with a binder. Teka Commission of Motorization and Energetics in Agriculture, 13(1), 83-88.Search in Google Scholar

Kulig, R., Skonecki, S., Gawłowski, S., Zdybel, A., Łysiak, G. (2013). Oddziaływanie ciśnienia na efektywność zagęszczania trocin wybranego drewna miękkiego. Acta Scientiarum Polonorum. Technica Agraria, 12(1-2), 31-40.Search in Google Scholar

Kulig, R., Łysiak, G., Skonecki, S., Kobus, Z., Rydzak, L., Guz, T. (2014). Określenie zależności między ciśnieniem a parametrami zagęszczania wybranych roślin energetycznych. Motrol – Motoryzacja i Energetyka Rolnictwa, 16(1), 55-58.Search in Google Scholar

Kwaśniewski, D., Kuboń, M. (2016). Efektywność ekonomiczna produkcji peletów ze słomy zbóż. Agricultural Engineering, 20(4), 147-155.Search in Google Scholar

Laskowski, J., Skonecki, S. (2001). Badania procesów aglomerowania surowców paszowych – aspekt metodyczny. Inżynieria Rolnicza, 2(22), 187-193.Search in Google Scholar

Li, Y., Liu, H. (2000). High pressure densification of wood residues to form an upgraded fuel. Biomass and Bioenergy, 19(3), 177-186.Search in Google Scholar

Lisowski, A., Matkowski, P., Dąbrowska, M., Piątek, M., Świętochowski, A., Klonowski, J., Mieszkalski, L., Reshetiuk, V. (2018). Particle Size Distribution and Physicochemical Properties of Pel-lets Made of Straw, Hay, and Their Blends. Waste and Biomass Valorization.https://doi.org/10.1007/s12649-018-0458-8.10.1007/s12649-018-0458-8Open DOISearch in Google Scholar

Mani, S., Tabil, L.G., Sokhansanj, S. (2006). Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy, 30(7), 648-654.Search in Google Scholar

Mao, G., Huang, N., Chen, L., Wang, H. (2018). Research on biomass energy and environment from the past to the future: A bibliometric analysis. Science of the Total Environment, 635, 1081-1090.Search in Google Scholar

Relova, I., Vignote, S., León, M. A., Ambrosio, Y. (2009). Optimisation of the manufacturing variables of sawdust pellets from the bark of Pinus caribaea Morelet: Particle size, moisture and pressure. Biomass and Bioenergy, 33, 1351-1357.Search in Google Scholar

Ruiz, G., Ortiz, M., Pandolfi, A. (2000). Three-dimensional finite-element simulation of the dynamic Brazilian tests on concrete cylinders. International Journal for Numerical Methods in Engineering. 48, 963-994.Search in Google Scholar

Skonecki, S., Kulig, R. (2011). Wpływ wilgotności biomasy roślinnej i nacisku tłoka na parametry brykietowania i wytrzymałość aglomeratu. Autobusy, Technika, Eksploatacja, Systemy transportowe, 10, 375-386.Search in Google Scholar

Whittaker, C., Shield, I. (2017). Factors affecting wood, energy grass and straw pellet durability – A review. Renewable and Sustainable Energy Reviews, 71, 1-11.Search in Google Scholar

Zdanowska, P., Florczak, I., Słoma, J., Tucki, K., Orynycz, O., Wasiak, A.L., Świć, A. (2019). An Evaluation of the Quality and Microstructure of Biodegradable Composites as Contribution towards Better Management of Food Industry Wastes. Sustainability, 11(5), 1504Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo