1. bookVolume 25 (2015): Issue 1 (March 2015)
    Safety, Fault Diagnosis and Fault Tolerant Control in Aerospace Systems, Silvio Simani, Paolo Castaldi (Eds.)
Journal Details
License
Format
Journal
First Published
05 Apr 2007
Publication timeframe
4 times per year
Languages
English
Copyright
© 2020 Sciendo

A Probabilistic Method for Certification of Analytically Redundant Systems

Published Online: 25 Mar 2015
Page range: 103 - 116
Received: 30 Jan 2014
Journal Details
License
Format
Journal
First Published
05 Apr 2007
Publication timeframe
4 times per year
Languages
English
Copyright
© 2020 Sciendo

Analytical fault detection algorithms have the potential to reduce the size, power and weight of safety-critical aerospace systems. Analytical redundancy has been successfully applied in many non-safety critical applications. However, acceptance for aerospace applications will require new methods to rigorously certify the impact of such algorithms on the overall system reliability. This paper presents a theoretical method to assess the probabilistic performance for an analytically redundant system. Specifically, a fault tolerant actuation system is considered. The system consists of dual-redundant actuators and an analytical fault detection algorithm to switch between the hardware components. The exact system failure rate per hour is computed using the law of total probability. This analysis requires knowledge of the failure rates for the hardware components. In addition, knowledge of specific probabilistic performance metrics for the fault detection logic is needed. Numerical examples are provided to demonstrate the proposed analysis method.

Keywords

ADDSAFE (2012). ADDSAFE: Advanced Fault Diagnosis for Sustainable Flight Guidance and Control, European 7th Framework Program, http://addsafe.deimos-space.com/.Search in Google Scholar

Aldous, D. (1989). Probability Approximations via the Poisson Clumping Heuristic, Springer-Verlag, New York, NY.Search in Google Scholar

Asmussen, S.R. and Glynn, P.W. (2007). Stochastic Simulation: Algorithms and Analysis, Springer, New York, NY.Search in Google Scholar

Belcastro, C. and Belcastro, C. (2003). On the validation of safety critical aircraft systems, Part I: An overview of analytical and simulation method, Proceedings of the AIAA Conference of Guidance, Navigation and Control, GNC 2003, Austin, TX, USA, paper no. AIAA 2003-5559.Search in Google Scholar

Bleeg, R. (1988). Commercial jet transport fly-by-wire architecture considerations, AIAA/IEEE Digital Avionics Systems Conference, San Jose, CA, USA, pp. 399-406.Search in Google Scholar

Brook, D. and Evans, D.A. (1972). An approach to the probability distribution of CUSUM run length, Biometrika 59(3): 539-549.Search in Google Scholar

Chen, J. and Patton, R. (1999). Robust Model-Based Fault Diagnosis for Dynamic Systems, Kluwer, Boston, MA.Search in Google Scholar

Collinson, R. (2011). Introduction to Avionic Systems, 3rd Edition, Springer, New York, NY.Search in Google Scholar

Ding, S. (2008). Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools, Springer-Verlag, Berlin.Search in Google Scholar

Efimov, D., Cieslak, J., Zolghadri, A. and Henry, D. (2013). Actuator fault detection in aircraft systems: Oscillatory failure case study, Annual Reviews in Control 37(1): 180-190.Search in Google Scholar

Egan, J. (1975). Signal Detection Theory and ROC Analysis, Academic Press, New York, NY.Search in Google Scholar

Embrechts, P., Kluppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance, Springer, New York, NY.Search in Google Scholar

Fawcett, T. (2006). An introduction to ROC analysis, Pattern Recognition Letters 27(8): 861-874.Search in Google Scholar

Freeman, P., Pandita, R., Srivastava, N. and Balas, G. (2013). Model-based and data-driven fault detection performance for a small UAV, IEEE Transactions on Mechatronics 18(4): 1300-1309.Search in Google Scholar

Goupil, P. (2010). Oscillatory failure case detection in the A380 electrical flight control system by analytical redundancy, Control Engineering Practice 18(9): 1110-1119.Search in Google Scholar

Goupil, P. (2011). AIRBUS state of the art and practices on FDI and FTC in flight control system, Control Engineering Practice 19(6): 524-539.Search in Google Scholar

Gustafsson, F., °Aslund, J., Frisk, E., Krysander, M. and Nielsen, L. (2008). On threshold optimization in fault-tolerant systems, Proceedings of the IFAC World Congress, Seoul, Korea, pp. 7883-7888.Search in Google Scholar

Heller, M., Niewoehner, R. and Lawson, P.K. (2001). F/A-18E/F super hornet high-angle-of-attack control law development and testing, Journal of Aircraft 38(5): 841-847.Search in Google Scholar

Hu, B. and Seiler, P. (2013). A probabilistic method for certification of analytically redundant systems, Proceedings of the 2nd International Conference of Control and Fault-Tolerant Systems, SysTol 2013, Nice, France, pp. 13-18.Search in Google Scholar

Isermann, R. (2006). Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer-Verlag, Berlin. Search in Google Scholar

Isermann, R. and Ballé, P. (1997). Trends in the application of model-based fault detection and diagnosis of technical processes, Control Engineering Practice 5(5): 709-719.Search in Google Scholar

Krasich, M. (2000). Use of fault tree analysis for evaluation of system-reliability improvements in design phase, Proceedings of the IEEE Annual Reliability and Maintainability Symposium, RAMS 2000, Los Angeles, CA, USA, pp. 1-7.Search in Google Scholar

Lee, W., Grosh, D., Tillman, A. and Lie, C. (1985). Fault tree analysis, methods, and applications: A review, IEEE Transactions on Reliability 34(3): 194-203.Search in Google Scholar

Lucas, J.M. and Saccucci, M.S. (1990). Exponentially weighted moving average control schemes: Properties and enhancements, Technometrics 32(1): pp. 1-12.Search in Google Scholar

Murthy, D., Xie, M. and Jiang, R. (2004). Weibull Models, John Wiley & Sons, Hoboken, NJ.Search in Google Scholar

Nakagawa, T. and Osaki, S. (1975). The discrete Weibull distribution, IEEE Transactions on Reliability 24(5): 300-301.Search in Google Scholar

Patton, R.J. and Chen, J. (1991). Robust fault detection using eigenstructure assignment: A tutorial consideration and some new results, Proceedings of the IEEE Conference on Decision and Control, CDC 1991, Brighton, UK, pp. 2242-2247. Search in Google Scholar

Åslund, J., Biteus, J., Frisk, E., Krysander, M. and Nielsen, L. (2007). Safety analysis of autonomous systems by extended fault tree analysis, International Journal of Adaptive Control and Signal Processing 21(2-3): 287-298.Search in Google Scholar

Rausand, M. and Hoyland, A. (2004). System Reliability Theory: Models, Statistical Methods, and Applications, Wiley-Interscience, Hoboken, NJ.Search in Google Scholar

Renfrow, J., Liebler, S. and Denham, J. (1994). F-14 flight control law design, verification, and validation using computer aided engineering tools, Proceedings of the IEEE Conference on Control Applications, CCA 1994, Glasgow, UK, pp. 359-364.Search in Google Scholar

Robert, C. and Casella, G. (2004). Monte Carlo Statistical Methods, Springer, New York, NY.Search in Google Scholar

Rubino, G. and Tuffin, B. (2009). Rare Event Simulation Using Monte Carlo Methods, Wiley, New York, NY.Search in Google Scholar

Singpurwalla, N.D. (2006). Reliability and Risk: A Bayesian Perspective, John Wiley & Sons, Chichester.Search in Google Scholar

Stein, W. and Dattero, R. (1984). A new discrete Weibull distribution, IEEE Transactions on Reliability 33(2): 196-197.Search in Google Scholar

United States Congress (2012). House resolution 658: FAA modernization and reform act of 2012, Section 332: Integration of civil unmanned aircraft systems into national airspace system.Search in Google Scholar

Vanek, B., Bauer, P., Gozse, I., Lukatsi, M., Reti, I. and Bokor, J. (2014). Safety critical platform for mini UAS insertion into the common airspace, Proceedings of the AIAA Guidance, Navigation and Control Conference, GNC 2014, National Harbor, MD, USA, AIAA-2014-0977.Search in Google Scholar

Wheeler, T.J., Seiler, P., Packard, A.K. and Balas, G.J. (2011). Performance analysis of fault detection systems based on analytically redundant linear time-invariant dynamics, Proceedings of the American Control Conference, ACC 2011, San Francisco, CA, USA, pp. 214-219.Search in Google Scholar

Willsky, A.S. and Jones, H.L. (1976). A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems, IEEE Transactions on Automatic Control 21(1): 108-112.Search in Google Scholar

Yeh, Y. (1996). Triple-triple redundant 777 primary flight computer, Proceedings of the 1996 IEEE Aerospace Applications Conference, Aspen, CO, USA, pp. 293-307.Search in Google Scholar

Yeh, Y. (2001). Safety critical avionics for the 777 primary flight controls system, Proceedings of the 20th Digital Avionics Systems Conference, DASC 2001, Daytona Beach, FL, USA, pp. 1.C.2.1-1.C.2.11. Search in Google Scholar

Plan your remote conference with Sciendo