1. bookVolume 31 (2018): Issue 3 (September 2018)
Journal Details
First Published
30 May 2014
Publication timeframe
4 times per year
access type Open Access

Assessment of noggin level in pulmonary arterial hypertension patients

Published Online: 29 Oct 2018
Volume & Issue: Volume 31 (2018) - Issue 3 (September 2018)
Page range: 122 - 130
Received: 01 Feb 2018
Accepted: 08 Mar 2018
Journal Details
First Published
30 May 2014
Publication timeframe
4 times per year

Noggin (NOG) is a protein that is involved in the development of many body tissues, including nerve tissue, muscles, and bones. The NOG protein plays a role in germ layer-specific derivation of specialized cells. Via NOG, the formation of neural tissues, the notochord, hair follicles, and eye structures arise from the ectoderm germ layer, while noggin activity in the mesoderm gives way to the formation of cartilage, bone and muscle growth. In the endoderm, NOG is involved in the development of the lungs.

NOG dimerizes by a core body, while two pairs of strands extend from it preceding by an N-terminal segment (called a clip segment) with approximately 20 amino acids. This clip twists around the BMP ligand and obstructs the growth factor surfaces from binding to both BMP receptors type I and type II. NOG binding to some BMPs inhibits these from combining and thus activating receptors of BMP, therefore, blocking non-Smad and Smad-dependent signaling.

The anti-proliferative noggin has particular effects in pulmonary arterial smooth muscle cells (PASMCs) that are exposed to specifically down regulated hypoxia. This occurs together with the BMP4 up-regulation levels of protein, and this imbalance between NOG and BMP4 consequence results in the activation and development of PAH disease. Our study consists of numerous examinations so as to explore new biomarkers in order to determine onset of PAH, and to discover the relationship between NOG serum level and gender, age, body mass index (BMI), waist circumferences (WC), smoking, types of PAH primaries and secondaries, as well as their grade.


1. Al-Najeem HT, Al-Dujaili ANG. Assessment of bone morphogentic protein receptor 2 level in pulmonary arterial hypertension disease. Res J Pharm Tech. 2017;10(8):2614-8.10.5958/0974-360X.2017.00464.4Search in Google Scholar

2. Al-Najeem HT, Al-Dujaili ANG. Assessment of Germlin-1 level in pulmonary arterial hypertension disease. Res J Pharm Tech. 2017;10(11):3803-6.10.5958/0974-360X.2017.00690.4Search in Google Scholar

3. Paulin R, Meloche J, Bonnet S. STAT3 signaling in pulmonary arterial hypertension. JAKSTAT 2012;1(4):223-33.10.4161/jkst.22366Search in Google Scholar

4. Meloche J, Pflieger A, Vaillancourt M, Graydon C, Provencher S, Bonnet S. MiRNAs in PAH: Biomarker, therapeutic target or both? Drug Discov Today. 2014;19(8):1264-9.10.1016/j.drudis.2014.05.015Search in Google Scholar

5. Sylvester JT, Shimoda LA, Aaronson PI, Ward JPT. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92(1):367-520.10.1152/physrev.00041.2010Search in Google Scholar

6. Wang J, Fu X, Yang K, Jiang Q, Chen Y, Jia J, et al. Hypoxia inducible factor-1-dependent up-regulation of BMP4 mediates hypoxia-induced increase of TRPC expression in PASMCs. Cardiovasc Res. 2015;107(1):108-18.10.1093/cvr/cvv122Search in Google Scholar

7. Zhang Y, Wang Y, Yang K, Tian L, Fu X, Wang Y, et al. BMP4 increases the expression of TRPC and basal [Ca2+]i via the p38MAPK and ERK1/2 pathways independent of BMPRII in PASMCs. PLoS One. 2014;9(12):e112695.10.1371/journal.pone.0112695Search in Google Scholar

8. Song B., Jin H., Yu X., Zhang Z., Yu H., Ye J., et al.: Angiotensin-converting enzyme 2 attenuates oxidative stress and VSMC proliferation via the JAK2/STAT3/SOCS3 and profilin-1/MAPK signaling pathways. Regul Pept. 2013;185,44-51.Search in Google Scholar

9. Boucherat O, Bonnet S. NOGGIN: A new therapeutic target for PH? Focus on “Noggin inhibits hypoxia-induced proliferation by targeting store-operated calcium entry and transient receptor potential cation channels.” Am J Physiol Cell Physiol. 2015;308(11): c867-8.10.1152/ajpcell.00088.2015Search in Google Scholar

10. Yang K, Lu W, Jia J, Zhang J, Zhao M, Wang S, et al. Noggin inhibits hypoxia-induced proliferation by targeting store-operated calcium entry and transient receptor potential cation channels. Am J Physiol Cell Physiol. 2015;308(11):C869-78.10.1152/ajpcell.00349.2014Search in Google Scholar

11. Smith WC, Harland RM. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell. 1992;70(5):829-40.10.1016/0092-8674(92)90316-5Search in Google Scholar

12. Avsian-Kretchmer O, Hsueh AJW. Comparative genomic analysis of the eight-membered ring cystine knot-containing bone morphogenetic protein antagonists. Mol Endocrinol. 2004;18(1):1-12.10.1210/me.2003-0227Search in Google Scholar

13. Krause C, Guzman A, Knaus P. Noggin. Int J Biochem Cell Biol. 2011;43(4):478-81.10.1016/j.biocel.2011.01.007Search in Google Scholar

14. Tylzanowski P, Mebis L, Luyte FP. The Noggin null mouse phenotype is strain dependent and haploinsufficieny leads to skeletal defects. Developmental Dynamics. 2006;235(6):1599-607.10.1002/dvdy.20782Search in Google Scholar

15. Marcelino J, Sciortino cm, Romero MF, Ulatowski LM, Ballock RT. Economides A. N., et al. Human disease-causing NOG missense mutations: effects on noggin secretion, dimer formation, and bone morphogenetic protein binding. Proc Natl Acad Sci USA. 2001; 98(20):11353-8.10.1073/pnas.201367598Search in Google Scholar

16. Masuda S, Namba K, Mutai H, Usui S, Miyanaga Y, Kaneko H, et al. A mutation in the heparin-binding site of noggin as a novel mechanism of proximal symphalangism and conductive hearing loss. Biochem Biophys Res Commun. 2014;447(3):496-502.10.1016/j.bbrc.2014.04.015Search in Google Scholar

17. Wang G, Zhang H, Zhao Y, Li J, Cai J, Wang P, et al. Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem Biophys Res Commun. 2005;330(3):934-42.10.1016/j.bbrc.2005.03.058Search in Google Scholar

18. Schwaninger R, Rentsch CA, Wetterwald A, van der Horst G, van Bezooijen RL, van der Pluijm G, et al. Lack of noggin expression by cancer cells is a determinant of the osteoblast response in bone metastases. Am J Pathol. 2007;170(1):160-75.10.2353/ajpath.2007.051276Search in Google Scholar

19. Lin SJ, Lerch TF, Cook RW, Jardetzky TS, Woodruff TK. The structural basis of TGF-beta, bone morphogenetic protein, and activin ligand binding. Reproduction. 2006;132(2):179-90.10.1530/rep.1.01072Search in Google Scholar

20. Gerhart J, Pfautz J, Neely C, Elder J, DuPrey K, Menko AS, et al.: Noggin producing, MyoD-positive cells are crucial for eye development. Dev. Biol. 2009;336(1):30-41.Search in Google Scholar

21. Sharov AA, Weiner L, Sharova TY, Siebenhaar F, Atoyan R, Reginato AM, et al.: Noggin overexpression inhibits eyelid opening by altering epidermal apoptosis and differentiation. EMBO J. 2003;22(12):2992-3003.10.1093/emboj/cdg291Search in Google Scholar

22. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, García-Verdugo JM, Alvarez-Buylla A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron. 2000;28(3):713-26.10.1016/S0896-6273(00)00148-3Search in Google Scholar

23. Stafford DA, Monica SD, Harland RM. Follistatin interacts with Noggin in the development of the axial skeleton. Mech Dev. 2014; 131(1):78-85.10.1016/j.mod.2013.10.001394379124514266Search in Google Scholar

24. Bonaguidi MA, Peng CY, McGuire T, Falciglia G, Gobeske KT, Czeisler C, et al. Noggin expands neural stem cells in the adult hippocampus. J Neurosci. 2008;28(37):9194-204.10.1523/JNEUROSCI.3314-07.2008365137118784300Search in Google Scholar

25. Grenier-Vallée P. Noggin and Chordin knockdown in Distraction Osteogenesis. Canada: M. Sc. Thesis, Univ. McGill. 2013:101 pp. Available from: http://http://digitool.library.mcgill.ca/thesisfile116968.pdf.Search in Google Scholar

26. Freedman DS, Horlick M, Berenson GS. A comparison of the Slaughter skinfold-thickness equations and BMI in predicting body fatness and cardiovascular disease risk factor levels in children1-4. Am J Clin Nutr. 2013;98(6):1417-24.10.3945/ajcn.113.065961383153424153344Search in Google Scholar

27. Rothberg AE, McEwen LN, Kraftson AT, Ajluni N, Fowler CE, Nay CK, et al. Impact of weight loss on waist circumference and the components of the metabolic syndrome. BMJ Open Diabetes Res Care. 2017;5(1):e000341.10.1136/bmjdrc-2016-000341533767828316795Search in Google Scholar

28. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al.: 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2016;37(1):67-119.10.1093/eurheartj/ehv31726320113Search in Google Scholar

29. Alhabeeb W, Idrees MM, Ghio S, Kashour T. Saudi Guidelines on the Diagnosis and Treatment of Pulmonary Hypertension: Pulmonary hypertension due to left heart disease. Ann Thorac Med. 2014;9(1):S47-S55.10.4103/1817-1737.134026411427625076997Search in Google Scholar

30. McNeil K, Dunning J, Morrell NW. The pulmonary physician in critical care. 13: The pulmonary circulation and right ventricular failure in the ITU. Thorax. 2003;58(2):157-62.10.1136/thorax.58.2.157174656212554902Search in Google Scholar

31. Jernigan NL, Resta TC. Calcium homeostasis and sensitization in pulmonary arterial smooth muscle. Microcirculation. 2014;21(3):259-71.10.1111/micc.1209624118444Search in Google Scholar

32. La Rosa I, Camargo LSA, Pereira MM, Fernandez-Martin R, Paz DA. Effects of bone morphogenic protein 4 (BMP4) and its inhibitor, Noggin, on in vitro maturation and culture of bovine preimplantation embryos. Reprod Biol Endocrinol. 2011;9:18.10.1186/1477-7827-9-18304291921281523Search in Google Scholar

33. Wright AF. The Influence of Gender and Sex Hormones in the Development of Translational and Experimental Pulmonary Arterial Hypertension. United Kingdom, Scotland: Ph. D. Thesis, Univ. Glasgow 2014:302 pp.Search in Google Scholar

34. White K, Johansen AK, Nilsen M, Ciuclan L, Wallace E, Paton, L, et al. Activity of the estrogen-metabolizing enzyme cytochrome P450 1B1 influences the development of pulmonary arterial hypertension. Circulation. 2012;126(9):1087-98.10.1161/CIRCULATIONAHA.111.06292722859684Search in Google Scholar

35. Austin ED, Cogan JD, West JD, Hedges LK, Hamid R, Dawson EP, et al. Alterations in oestrogen metabolism: Implications for higher penetrance of familial pulmonary arterial hypertension in females. Eur Respir J. 2009;34(5),1093-9.Search in Google Scholar

36. Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, et al. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension. 2004;43:1239-45.10.1161/01.HYP.0000128420.01881.aa15123572Search in Google Scholar

37. Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age and gender-related ventricular-vascular stiffening: A community-based study. Circulation. 2005;112(15):2254-62.10.1161/CIRCULATIONAHA.105.54107816203909Search in Google Scholar

38. Sun Z. Aging, arterial stiffness, and hypertension. Hypertension. 2015;65(2):252-6.10.1161/HYPERTENSIONAHA.114.03617428897825368028Search in Google Scholar

39. Berra G, Noble S, Soccal PM, Beghetti M, Lador F. Pulmonary hypertension in the elderly: a different disease? Breathe (Sheff). 2016;12(1):43-9.10.1183/20734735.003416481823727066136Search in Google Scholar

40. Chaouat A, Bugnet AS, Kadaoui N, Schott R, Enache I, Ducoloné A, et al. Severe pulmonary hypertension and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;172(2):189-94.10.1164/rccm.200401-006OC15831842Search in Google Scholar

41. Moreira EM, Gall H, Leening MJG, Lahousse L, Loth DW, Krijthe BP, et al. Prevalence of pulmonary hypertension in the general population: The Rotterdam study. PLoS One. 2015;10 (6):e0130072.10.1371/journal.pone.0130072447802926102085Search in Google Scholar

42. Zhao L, Wang J, Wang L, Liang YT, Chen YQ, Lu WJ, et al. Remodeling of rat pulmonary artery induced by chronic smoking exposure. J Thorac Dis. 2014;6(6):818-28.Search in Google Scholar

43. Archer A, Weir E, Wilkins M. The Basic Science of pulmonary arterial hypertension for clinicians: new concepts and experiemntal therapies. Circulation. 2010;121(18):2045-66.10.1161/CIRCULATIONAHA.108.847707286948120458021Search in Google Scholar

44. Kessler R, Faller M, Weitzenblum E, Chaouat A, Aykut A, Ducoloné A, Ehrhart, M, et al. “Natural history” of pulmonary hypertension in a series of 131 patients with chronic obstructive lung disease. Am J Respir Crit Care Med. 2001;164(2):219-24.10.1164/ajrccm.164.2.200612911463591Search in Google Scholar

45. Scharf SM, Iqbal M, Keller C, Criner G, Lee S, et al. Hemodynamic characterization of patients with severe emphysema. Am J Respir Crit Care Med. 2002;166(3):314-22.10.1164/rccm.210702712153963Search in Google Scholar

46. Floyd R, Wray S. Calcium transporters and signalling in smooth muscles. Cell Calcium. 2007;42(4-5):467-76.10.1016/j.ceca.2007.05.01117624426Search in Google Scholar

47. Lu W, Ran P, Zhang D, Lai N, Zhong N, Wang J. Bone morphogenetic protein 4 enhances canonical transient receptor potential expression, store-operated Ca2+ entry, and basal [Ca2+]i in rat distal pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol. 2010;299(6): C1370-78.10.1152/ajpcell.00040.2010300633620844246Search in Google Scholar

48. Ashwell M, Gibson S. Waist-to-height ratio as an indicator of early health risk: Simpler and more predictive than using a matrix based on BMI and waist circumference. BMJ Open. 2016;6(3):e010159.10.1136/bmjopen-2015-010159480015026975935Search in Google Scholar

49. Hammod HJ, Al-Dujaili AN, Al-Dujaili MN. Relationship between adipocyte fatty acid-binding protein in obese men with cardiovascular diseases. Res J Pharm Biol Chem Sci. 2016;7(3):804-8.Search in Google Scholar

50. Hammod HJ, Al-Dujaili AN, Al-Dujaili MN. The Correlation between cardiovascular diseases in obese men with the inflammatory markers: Dyslipidemia, C-reactive protein and tumor necrosis factor-α. Res J Pharm Biol Chem Sci. 2016;7(3):809-14.Search in Google Scholar

51. Taichman DB, Mandel J. Epidemiology of pulmonary arterial hypertension. Clin Chest Med. 2007;28(1):1-22.10.1016/j.ccm.2006.11.01217338925Search in Google Scholar

52. Burger CD, Foreman AJ, Miller DP, Safford RE, McGoon MD, Badesch DB. Comparison of body habitus in patients with pulmonary arterial hypertension enrolled in the registry to evaluate early and long-term PAH disease management with normative values from the national health and nutrition examination survey. Mayo Clin Proc. 2011;86(2):105-12.10.4065/mcp.2010.0394303143421282484Search in Google Scholar

53. Leone N, Courbon D, Thomas F, Bean K, Jego B, Leynaert B, et al. Lung function impairment and metabolic syndrome: the critical role of abdominal obesity. Am J Respir Crit Care Med. 2009;179(6):509-16.10.1164/rccm.200807-1195OC19136371Search in Google Scholar

54. Taraseviciute A, Voelkel NF. Severe pulmonary hypertension in postmenopausal obese women. Eur J Med Res. 2006;11(5):198-202.Search in Google Scholar

55. Zeng W, Sun Y, Gu Q, Xiong C, Li J, He J. The impact of pulmonary arterial hypertension-targeted therapy on survival in Chinese patients with idiopathic pulmonary arterial hypertension. Pulm Circ. 2012;2(3):373-8.10.4103/2045-8932.101655348730623130106Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo