1. bookVolume 35 (2016): Issue 3 (September 2016)
Journal Details
First Published
24 Aug 2013
Publication timeframe
4 times per year
access type Open Access

Quantitative and Qualitative Approaches of Delineation in Detailed Mapping of Vineyard Landscape. Case Study: Vicinity of Pezinok (Slovakia)

Published Online: 29 Sep 2016
Page range: 240 - 252
Journal Details
First Published
24 Aug 2013
Publication timeframe
4 times per year

The main goal of this paper is the application of qualitative and quantitative free available data for geographical delineation based on reconnaissance research in vineyard landscape. The results of delineation are useful in agricultural management or environmental planning. Our delineation may serve as the basic information on site conditions of vineyards near Pezinok (Slovakia), with historical use from the beginning of 13th century. We have studied the actual land cover and classified physiotopes of the study area into a set of relatively homogenous and coherent landscape units. The landscape units defined in this work consist of homogenous physiotopes in terms of their structural and functional characteristics, which have been shaped by natural factors (land-forms, soil type and subtype, geological base, elevation, slope, aspect, solar radiation and normal different vegetation index (NDVI)). The characteristics were used to define 23 landscape units in qualitative delineation (based on both qualitative and quantitative data). Only quantitative characteristics – elevation, aspect, slope, solar radiation and NDVI, were used in a K-means cluster analysis to define the 17 landscape units. The number of landscape units was computed by WB-index, and standardisation of data was computed by factor analysis. The whole classification process was statistically significant. The strength of the grouping procedure was tested by using Discriminant Analysis, which found that 92.70% of objects in qualitative and 98.50% of objects in quantitative delineation were correctly classified.


Bailey, R.G. (1995). Description of the ecoregions of the United States. Miscellaneous publication, 1391. Washington D. C.: U.S. Forest Service.Search in Google Scholar

Bakhsh, A. & Kanwar R.S. (2005). Spatial clusters of subsurface drainage water NO3−N leaching losses. Journal of the American Water Resources Association, 41, 333−341. DOI: 10.1111/j.1752-1688.2005.tb03739.x.Search in Google Scholar

Bezák, A. (1993). Problems and methods of regional taxonomy (in Slovak). Geographia Slovaca, 3, 96.Search in Google Scholar

Blažek, J. & Uhlíř D. (2002). Regional development theories. Outline, criticism classification (in Czech). Praha: Universita Karlova v Praze, Nakladatelství Karolinum.Search in Google Scholar

Browne, R.P. & McNicholas P.D. (2012). Model-based clustering, classification, and discriminant analysis of data with mixed type. Journal of Statistical Planning and Inference, 142, 2976−2984. DOI: 0.1016/j.jspi.2012.05.001.Search in Google Scholar

Čech, V. & Kunáková L. (2012). Geoecological research and geoecological database (case study: cadastral area of village Kolinovce) (in Slovak). Geografický Časopis, 64, 105−118.Search in Google Scholar

Feranec, J. & Oťaheľ J. (1999). Mapping of land cover at scale 1:50 000: draft of the nomenclature for the Phare countries (in Slovak). Geografický Časopis, 51, 19−44.Search in Google Scholar

Gallant, A.L., Whittier, T.R., Larsen, D.P., Omernik, J.M. & Hughes R.M. (1989). Regionalization as a tool for managing environmental resources. Corvallis: Corvallis Environmental Research Laboratory and NSI Technology Services.Search in Google Scholar

GKÚ (1990). Base map of Slovakia 1:10 000 – raster form, Bratislava (in Slovak). Bratislava: Geodetický a kartografický ústav.Search in Google Scholar

Hargrove, W.W. & Hoffman F.M. (2005). Potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environ. Manag., 34, 39−60. DOI: 10.1007/s00267-003-1084-0.Search in Google Scholar

Hartigan, J.A. (1975). Clustering algorithms. New York: John Wiley and Sons.Search in Google Scholar

Heino, J., Muotka, T., Paavola, R., Hämäläinen, H. & Koskenniemi E. (2002). Correspondence between regional delineations and spatial patterns in macro invertebrate assembladges of boreal headwater streams. J. North Am. Benthol. Soc., 21, 397−413. http://www.jstor.org/stable/1468478Search in Google Scholar

Hessburg, P.F., Salter, R.B., Richmond, M.B. & Smith B.G. (2002). Ecological subregions of the interior Columbia Basin, USA. Appl. Veg. Sci., 3, 163−180. DOI: 10.2307/1478995.Search in Google Scholar

Hraško, Ľ. (Eds.) (2013). Geology map of Slovakia 1:50 000 (in Slovak). Bratislava: Štátny geologický ústav Dionýza Štúra. Available at: http://mapserver.geology.sk/gm50js (accessed October 2013).Search in Google Scholar

Hreško, J., Petrovič, F. & Mišovičová R. (2015). Mountain landscape archetypes of the Western Carpathians (Slovakia). Biodivers. Conserv., 24(13), 3269−3283. doi: 10.1007/s10531-015-0969-6.Search in Google Scholar

Hrnčiarová, T. (2008). Historical landscape structure - important part of landscape diversity (in Slovak). In V. Herber (Ed.), Fyzickogeografický zborník 6. fyzická geografie a trvalá udržitelnost (pp. 39−44). Příspevky z 25. výroční konference fyzickogeografické sekce České geografické společnosti konané 31. ledna 2008 v Brně. Brno: Masarykova univerzita.Search in Google Scholar

Chorley, R.J. & Haggett P. (1967). Models in geography. London: Methuen.Search in Google Scholar

Ivan, P., Jarabicová, M. & Muchová Z. (2015). Assessment of changes in landuse by coefficient of the ecological stability. 15th International Multidisciplinary Scientific Geoconference and EXPO. Albena: SGEM, 1(5), 73−80.Search in Google Scholar

Jenerette, G.D., Lee, J. & Norton D.J. (2002). Multivariate analysis of the ecoregion and delineation for aquatic systems. Environm. Manag., 29, 67−75. DOI: 10.1007/s00267-001-0041-z.Search in Google Scholar

Jensen, M.E., Goodman, I.A., Bourgeron, P.S., Poff, N.L. & Brewer C.K. (2001). Effectiveness of biophysical criteria in the hierarchical classification of drainage basins. Journal of the American Water Resources Association, 37, 1155−1167. DOI: 10.1111/j.1752-1688.2001.tb03629.x.Search in Google Scholar

Johnston, R.J. (1968). Choice in classification: the subjectivity of objective methods. Annals of the Association of American Geographers, 58, 575−589. DOI: 10.1111/j.1467-8306.1968.tb01653.x.Search in Google Scholar

Jusková, K. & Muchová Z. (2014). Options and trends of land consolidation in the Czech and Slovak Republic, with regard to common historical development of ownership and usage rights. 14th International Multidisciplinary Scientific Geoconference and EXPO. Albena: SGEM, 2(5), 471−478.Search in Google Scholar

Leathwick, R.J., Overton, M.J. & McLeod M. (2003). An environmental domain classification of New Zealand and its use as a tool. Conserv. Biol., 17, 1612−1623. DOI: 10.1111/j.1523-1739.2003.00469.x.Search in Google Scholar

Leopold, M. & Völkel J. (2005). Methodological approach and case study for the reconstruction of a (pre)historic land use model. Zeitschrift für Geomorphologie, 139(Suppl.), 173−188.Search in Google Scholar

Long, J., Nelson, T. & Wulder M. (2010). Regionalization of landscape pattern indices using multivariate cluster analysis. Environm. Manag., 46, 134−142. DOI: 10.1007/s00267-010-9510-6.Search in Google Scholar

McEwen, W.M. (Eds.) (1987). Ecological districts and regions of New Zealand. Four maps (1:500 000). New Zealand Biological Resources Centre publication 5. Department of Conservation, Wellington, New Zealand.Search in Google Scholar

Minár, J., Barka, I., Bonk, R., Bizubová, M., Čerňanský, J., Falťan, V., Gašpárek, J., Kolény, M., Kožuch, M., Kusendová, D., Machová, Z., Mičian, Ľ., Mičietová, E., Michalka, R., Novotný, J., Ružek, I., Švec, P., Tremboš, P., Trizna, M. & Zaťko M. (2001). Geoecological (complex physical-geographical) and mapping at large scales (in Slovak). Geografické Spektrum, 3. Bratislava: Geo-grafika.Search in Google Scholar

Minár, J. (2003). Detailed physical-geographical (geoecological) research and mapping in the landscape ecology. Ekológia (Bratislava), 22, 141−149.Search in Google Scholar

Minár, J. & Evans I.S. (2008). Elementary forms for land surface segmentation: The theoretical basis of terrain analysis and geomorphological mapping. Geomorphology, 95, 236−259. DOI: 10.1016/j.geomorph.2007.06.003.Search in Google Scholar

Olehowski, C., Naumann, S., Fischer, D. & Siegmund A. (2008). Geo-ecological spatial pattern analysis of the island of Fogo (Cape Verde). Global and Planetary Change, 63, 188−197. DOI: 10.1016/j.gloplacha.2008.09.006.Search in Google Scholar

Perko, D., Hrvatin, M. & Ciglič R. (2015). A methodology for natural landscape typification of Slovenia. Acta Geographica Slovenica, 55, 235−270. DOI: 10.3986/AGS.1938.Search in Google Scholar

Petek, F. (2005). Typology of Slovenia’s region with emphasis on land use and changes in land use. Acta Geographica Slovenica, 45, 33−52. DOI: 10.3986/AGS45102.Search in Google Scholar

Shaohong, W.U., Qinye, Y. & Du Z. (2003). Delineation of eco-geographic regional system of China. Journal of Geographical Sciences, 13, 309−315. doi: 10.1007/BF02837505.Search in Google Scholar

Soto, S. & Pintó J. (2010). Delineation of natural landscape units for Puerto Rico. Applied Geography, 30, 720−730. DOI: 10.1016/j.apgeog.2010.01.010.Search in Google Scholar

Šedivá, A. & Izakovičová Z. (2015). Assessment of representative landscape types of Skalica district. Ekológia (Bratislava), 34(4), 329−338. DOI: 10.1515/eko-2015-0030.Search in Google Scholar

Van Eetvelde, V. & Antrop M. (2009). A stepwise multi-scaled landscape typology and characterization for trans-regional integration, applied on the federal state of Belgium. Landsc. Urban Plann., 91, 160−170. DOI: 10.1016/j.landurbplan.2008.12.008.Search in Google Scholar

Van Leeuwen, C., Friant, P., Chone, X., Tregoat, O., Koundouras, S. & Dubordieu D. (2004). Influence of climate, soil, and cultivar in terroir. Am. J. Enol. Vitic., 55, 207−217.Search in Google Scholar

VUPOP (2012). Valuated soil-ecological units 1:50 000 (in Slovak). Bratislava: VÚPaOP. Available at: http://www.podnemapy.sk/bpej/viewer.htm?activelayer=2&layers=001 (accessable November 2013).Search in Google Scholar

Wickham, J.D. & Norton D.J. (1994). Mapping and analyzing landscape patterns. Landsc. Ecol., 9, 7−23. doi: 10.1007/BF00135075.Search in Google Scholar

Xu, Ch., Sheng, S., Chi, T., Yang, X., An, S. & Liu M. (2014). Developing a quantitative landscape regionalization framework integrating driving factors and response attributes of landscapes. Landscape Ecology Engineering, 10, 295−307. DOI: 10.1007/s11355-013-0225-8.Search in Google Scholar

Xu, X.L., Ma, K.M., Fu, B.J., Song, C.J. & Liu W. (2008). Relationships between vegetation and soil and topography in a dry warm river valley, SW China. Catena, 75, 138−145. DOI: 10.1016/j.catena.2008.04.016.Search in Google Scholar

Zhao, Q., Xu, M. & Fränti P. (2009). Sum-of-square based cluster validity index and significance analysis. In 9th International Conference on Adaptive and Natural Computing Algorithms (pp. 313−322). ICANNGA, Kuopio, Finland. DOI: 10.1007/978-3-642-04921-7_32.Search in Google Scholar

Zhao, Q. & Fränti P. (2014). WB-index: A sum of squares based index for cluster validity. Data & Knowledge Engineering, 92, 77−89. DOI: 10.1016/j.datak.2014.07.008.Search in Google Scholar

Zonneveld, I.S. (1995). Land ecology. Amsterdam: SPB Academic Publishing.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo