1. bookVolume 57 (2015): Issue 3 (September 2015)
Journal Details
License
Format
Journal
First Published
01 Jan 1957
Publication timeframe
4 times per year
Languages
English
access type Open Access

Litterfall and growth dynamics relationship with the meteorological variability in three forests in the Montseny natural park

Published Online: 22 Dec 2015
Page range: 145 - 159
Received: 14 Apr 2015
Accepted: 15 Jul 2015
Journal Details
License
Format
Journal
First Published
01 Jan 1957
Publication timeframe
4 times per year
Languages
English

We assessed the influence of some environmental conditions (temperature and rainfall) on the litterfall and BAI (basal area increment), in three close forests in the Montseny massif (NE part of the Iberian peninsula, Spain). Two of them are composed of deciduous species Fagus sylvatica and Quercus petraea, and the other one is a Mediterranean evergreen species, Quercus ilex. We have collected monthly data about litterfall and radial growth since 2007. For each forest there are tree plots, with litterfall traps and band dendrometers. This data has been related with the meteorological parameters of meteorological station closed to the study area. Our results show that F. sylvatica recorded the biggest drop in annual litterfall (6 Mg·ha−1·year−1), followed by Q. ilex (4.34 Mg·ha−1·year−1) and Quercus petraea (4.4 Mg·ha−1·year−1) and that all the values were similar to those observed in other forests and mountains with the same state of maturity. Regarding the litterfall, the investigation found a decline in the leaves fall in deciduous trees in years with hot summers. In addition, these warm summers produce a decline in the F. sylvatica BAI, but not in Q. petraea. Concerning growth, we found that Q. petraea increases the BAI on the study period while F. sylvatica does not. In conclusion, we believe that in the future Q. petraea will be more tolerant to the warm conditions than F. sylvatica, making the former a possible replacement of the second species.

Keywords

Aerts R. 1995. The advantages of being evergreen. Trends in Ecology and Evolution, 10, 402–407.Search in Google Scholar

Andivia E., Alejano R., Vázquez J. 2009. Evolución mensual del desfronde en dos dehesas de Quercus ilex subs. ballota de la provincia de Huelva. Influencia de la poda. 5o Congr. For. Español.Search in Google Scholar

Andivia E., Vázquez-Piqué J., Fernández M., Alejano R. 2013. Litter production in Holm oak trees subjected to different pruning intensities in Mediterranean dehesas. Agroforestry Systems, 87 (3), 657–666. doi: 10.1007/s10457-012-9586-5.Search in Google Scholar

Aranda I., Gil L., Pardos J.A. 2000. Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe. Trees, 14, 344–352. doi: 10.1007/s004680050229.Search in Google Scholar

Bellot J., Sánchez J.R., Lledó M.J., Martinez P., Escarré A. 1992. Litterfall as a measure of primary production in Mediterranean holm-oak forest. Vegetatio, 99 (1), 69–76. doi: 10.1007/BF00118211.Search in Google Scholar

Bolòs O. 1983. La vegetació del Montseny. Diputació de Barcelona, Barcelona.Search in Google Scholar

Bugmann H. 1997. Sensitivity of forests in the European Alps to future climatic change. Climate Research, 8 (1), 35–44. doi: 10.3354/cr008035Search in Google Scholar

Bussotti F., Borghini F., Celesti C., Leonzio C., Cozzi A., Bettini D., Ferretti M. 2003 Leaf shedding, crown condition and element return in two mixed holm oak forests in Tuscany, central Italy. Forest Ecology and Management, 176, 273–285.Search in Google Scholar

Bussotti F., Ferretti M., Cozzi A., Grossoni P., Bottacci A., Tani C. 1995. Crown status of holm oak (Quercus ilex L.) trees as related to phenology and environmental stress. Water, Air, and Soil Pollution, 85 (3), 1269–1274. doi: 10.1007/BF00477156Search in Google Scholar

Carceller F., Santa Cecilia M., Vallejo V., Novo M. 1989. Introduccion al ciclo de la materia organica en cinco ecosistemas forestales del Moncayo. Turiaso, 9, 361–372.Search in Google Scholar

Caritat A., Bertoni G., Molinas M., Oliva M., Domínguez-Planella A. 1996. Litterfall and mineral return in two cork-oak forests in northeast Spain. Annals of Forest Science, 53 (6), 1049–1058.Search in Google Scholar

Caritat A., García-Berthou E., Lapeña R., Vilar L. 2006. Litter production in a Quercus suber forest of Montseny (NE Spain) and its relationship to meteorological conditions. Annals of Forest Science, 63 (7), 791–800.Search in Google Scholar

Carlisle A., White A.H.F., Brown E.J. 1966. Litter fall, leaf production and the effects of defoliation by Tortrix viridana in a Sessile Oak (Quercus petraea) woodland. Journal of Ecology, 54, 65–85.Search in Google Scholar

Cole D.W., Rapp M. 1981. Elemental cycling in forest ecosystems. In: Dynamic properties of forest eco-systems (ed.: D.E. Reichle), Cambridge University Press, Cambridge, 341–410.Search in Google Scholar

Corcuera L., Camarero J.J., Gil-Pelegrín E. 2004. Effects of a severe drought on Quercus ilex growth and xylem anatomy. Trees: Structure and Function, 18, 83–92.Search in Google Scholar

Diaz-Maroto I.J., Vila-Lameiro P. 2006. Litter production and composition in natural stands of Quercus robur L. (Galicia, Spain). Polish Journal of Ecology, 54 (3), 429–439.Search in Google Scholar

Ferrés L., Roda F., Verdu A.M.C., Terradas J. 1984. Circulación de nutrientes en algunos ecosistemas forestales del Montseny (Barcelona). Mediterránea. Serie de Estudios Biológicos, 7, 139–166.Search in Google Scholar

Fotelli M.N., Nahm M., Radoglou K., Rennenberg H., Halyvopoulos G., Matzarakis A. 2009. Seasonal and interannual ecophysiological responses of beech (Fagus sylvatica) at its south-eastern distribution limit in Europe. Forest Ecology and Management, 257:1157–1164. doi: 10.1016/j.foreco.2008.11.026Search in Google Scholar

Gea-Izquierdo G., Cherubini P., Cañellas I. 2011. Tree-rings reflect the impact of climate change on Quercus ilex L. along a temperature gradient in Spain over the last 100 years. Forest Ecology and Management, 262, 1807–1816. doi: 10.1016/j.foreco.2011.07.025Search in Google Scholar

Granda E., Camarero J.J., Gimeno T.E., Martínez-Fernández J., Valladares F. 2013. Intensity and timing of warming and drought differentially affect growth patterns of co-occurring Mediterranean tree species. European Journal of Forest Research, 132, 469–480. doi: 10.1007/s10342-013-0687-0.Search in Google Scholar

Gutiérrez E. 1988. Dendroecological study of Fagus sylvatica L. in the Montseny Mountains (Spain). Acta Oecologica, 9 (3), 301–309.Search in Google Scholar

Gutiérrez E., Campelo F., Camarero J.J., Ribas M., Muntán E., Nabais C., Freitas H. 2011. Climate controls act at different scales on the seasonal pattern of Quercus ilex L. stem radial increments in NE Spain. Trees: Structure and Function, 25 (4), 637–646. doi: 10.1007/s00468-011-0540-3.Search in Google Scholar

Hansen K., Vesterdal L., Schmidt I.K., Gundersen P., Sevel L., Bastrup-Birk A., Pedersen L.B., Bille-Hansen J. 2009. Litterfall and nutrient return in five tree species in a common garden experiment. Forest Ecology and Management, 257 (10), 2133–2144. doi: 10.1016/j.foreco.2009.02.021.Search in Google Scholar

Jacoby G.C., D’Arrigo R.D. 1997. Tree rings, carbon dioxide, and climatic change. PNAS, 94, 8350–8353.Search in Google Scholar

Jump A.S., Hunt J.M., Peñuelas J. 2006. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology, 12, 2163–2174. doi: 10.1111/j.1365-2486.2006.01250.xSearch in Google Scholar

Kira T., Shidei T. 1967. Primary production and turnover of organic matter in different forest ecosystems of the Western Pacific. Japanese Journal of Ecology, 17, 70–87.Search in Google Scholar

Kotroczó Z., Veres Z., Fekete I., Papp M., Tóth J.A. 2012. Effects of climate change on litter production in a Quercetum petraeae-cerris forest in Hungary. Acta Silvatica et Lignaria Hungarica, 8, 31–38. doi: 10.2478/v10303-012-0003-6.Search in Google Scholar

Lebourgeois F., Bréda N., Ulrich E., Granier A. 2005. Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees: Structure and Function, 19, 385–401. doi: 10.1007/s00468-004-0397-9.Search in Google Scholar

Lebret M., Nys C., Forgeard F. 2001. Litter production in an Atlantic beech (Fagus sylvatica L.) time sequence. Annals of Forest Science, 58, 755–768.Search in Google Scholar

Leonardi S., Rapp M., Failla M., Komaromy E. 1992. Biomasse, minéralomasse, productivité et gestion de cer-tains éléments biogènes dans une forêt de Quercus suber L. en Sicile (Italie). Ecologia Mediterranea, 89–98.Search in Google Scholar

Liu C., Westman C.J., Berg B., Kutsch W., Wang G.Z., Man R., Ilvesniemi H. 2004. Variation in litter-fall-climate relationships between coniferous and broadleaf forests in Eurasia. Global Ecology and Biogeography, 13, 105–114. doi: 10.1111/j.1466-882X.2004.00072.x.Search in Google Scholar

Martín A., Gallardo J., Regina I.S. 1996. Aboveground litter production and bioelement potential return in an evergreen oak (Quercus rotundifolia) woodland near Salamanca (Spain). Annales des Sciences Forestieres, 53 (4), 811–818.Search in Google Scholar

Mátyás C. 2010. Forecasts needed for retreating forests. Nature, 464, 9401.Search in Google Scholar

Montserrat-Martí G., Camarero J.J., Palacio S., Pérez-Rontome C., Milla R., Albuixech J., Maestro M. 2009. Summer-drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: Implications for their persistence and reproduction. Trees: Structure and Function, 23, 787–799. doi: 10.1007/s00468-009-0320-5.Search in Google Scholar

Novák J., Dušek D., Slodičák M. 2014. Quantity and quality of litterfall in young oak stands. Journal of Forest Science, 60 (6), 219–225.Search in Google Scholar

Novák J., Slodicak M. 2008. Quantity and quality of litter-fall in young European beech (Fagus silvatica L.) stands in localities naturally dominated by broadleaves. Austrian Journal of Forest Science, 125 (1), 67–78.Search in Google Scholar

Oliva M., Molinas M., Caritat A. 1992. Variacion estacional del desfronde en dos parcelas de alcornocal. Scientia Gerundensis, 18, 121–130.Search in Google Scholar

Peñuelas J., Boada M. 2003. A global change-induced biome shift in the Montseny mountains (NE Spain). Global Change Biology, 9 (2), 131–140.Search in Google Scholar

Peñuelas J., Hunt J.M., Ogaya R., Jump A.S. 2008. Twentieth century changes of tree-ring δ13C at the southern range-edge of Fagus sylvatica: Increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Global Change Biology, 14, 1076–1088. doi: 10.1111/j.1365-2486.2008.01563.x.Search in Google Scholar

Rapp M., Santa Regina I., Rico M., Gallego H.A. 1999. Biomass, nutrient content, litterfall and nutrient return to the soil in Mediterranean oak forests. Forest Ecology and Management, 119, 39–49.Search in Google Scholar

Rodà F., Retana J., Gracia C.A., Bellot J. 1999. Ecology of mediterranean evergreen oak forests. Ecological Studies. Analysis and Synthesis, 137, 1–20. doi: 10.1007/978-3-642-58618-7.Search in Google Scholar

Rozas V., Camarero J.J., Sangüesa-Barreda G., Souto G., García-González I. 2015. Summer drought and ENSO-related cloudiness distinctly drive Fagus sylvatica growth near the species rear-edge in northern Spain. Agricultural and Forest Meteorology, 201, 153–164.Search in Google Scholar

Sá C., Madeira M., Gazarini L. 2005. Produção e decomposição de folhas da folhada de Quercus suber L. e Q. rotundifolia Lam. Rev. Cienc. Agrar., 28 (2), 257–272.Search in Google Scholar

Santa Regina I. 1987. Contribución al estudio de la dinámica de la materia orgánica y bioelementos en bosques en la Sierra de Béjar. Universidad de Salamanca.Search in Google Scholar

Tegel W., Seim A., Hakelberg D., Hoffmann S., Panev M., Westphal T., Büntgen U. 2014. A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. European Journal of Forest Research, 133 (1), 61–71. doi: 10.1007/s10342-013-0737-7.Search in Google Scholar

Vayreda J., Martínez-Vilalta J., Banqué M. 2013a. Els boscos davant del canvi climàtic. In: CREAF, Oficina Catalana del Canvi Climàtic, Generalitat de Catalunya. CREAF, Barcelona.Search in Google Scholar

Vayreda J., Martínez-Vilalta J., Banqué M. 2013b. Decaïment dels Boscos a Catalunya: DEBOSCAT. Verdu A.M.C. 1984. Circulació de nutrients en ecosistemes forestals del Montseny: caiguda de virosta i descomposició de les fulles. Universitat Autònoma de Barcelona.Search in Google Scholar

Verdu A.M.C., Ferrés L., Roda F., Terradas J. 1980. Estructuta y funcionalismo de un encinar montano en el Montseny. Mediterranéa, 4, 51–67.Search in Google Scholar

Vila-Lameiro P., Diaz-Maroto I.J. 2008. Las masas actuales de Quercus petraea en Galicia. Forest Systems, 11, 5–28.Search in Google Scholar

Weber P., Bugmann H., Fonti P., Rigling A. 2008. Using a retrospective dynamic competition index to reconstruct forest succession. Forest Ecology and Management, 254, 96–106. doi: 10.1016/j.foreco.2007.07.031Search in Google Scholar

Witkamp M., Van der Drift J. 1961. Breakdown of forest litter in relation to environmental factors. Plant and Soil, 15, 295–311.Search in Google Scholar

Zhang H., Yuan W., Dong W., Liu S. 2014. Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complexity, 20, 240–247. doi: 10.1016/j.ecocom.2014.01.003.Search in Google Scholar

Zimmermann J., Hauck M., Dulamsuren C., Leuschner C. 2015. Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in Central European mixed forests. Ecosystems, 18 (4), 560–572. doi: 10.1007/s10021-015-9849-x.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo