1. bookVolume 6 (2016): Issue 1 (January 2016)
Journal Details
License
Format
Journal
First Published
30 Dec 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Influence Of Membership Function’s Shape On Portfolio Optimization Results

Published Online: 13 Jan 2016
Page range: 45 - 54
Journal Details
License
Format
Journal
First Published
30 Dec 2014
Publication timeframe
4 times per year
Languages
English

Portfolio optimization, one of the most rapidly growing field of modern finance, is selection process, by which investor chooses the proportion of different securities and other assets to held. This paper studies the influence of membership function’s shape on the result of fuzzy portfolio optimization and focused on portfolio selection problem based on credibility measure. Four different shapes of the membership function are examined in the context of the most popular optimization problems: mean-variance, mean-semivariance, entropy minimization, value-at-risk minimization. The analysis takes into account both: the study of necessary and sufficient conditions for the existence of extremes, as well as the statistical inference about the differences based on simulation.

Keywords

[1] H. Markowitz, Portfolio Selection, The Journal of Finance, vol.7, no.1, 1952, pp.77-91.Search in Google Scholar

[2] B. Liu and Y.-K. Liu, Expected value of fuzzy variable and fuzzy expected value models, Fuzzy Systems, IEEE Transactions on, vol. 10, no. 4,2002, pp. 445–450.Search in Google Scholar

[3] J. Peng, H.M.K., Mok, T., Wai-Man, Credibility programming approach to fuzzy portfolio selection problems, Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference on, vol.4, 2005, pp.2523–2528.Search in Google Scholar

[4] X. Huang, Fuzzy chance-constrained portfolio selection, Applied Mathematics and Computation, vol. 177, no. 2, 2006, pp. 500–507.Search in Google Scholar

[5] X. Huang, Mean-semivariance models for fuzzy portfolio selection, J.Comput. Appl. Math., vol. 217, no. 1, 2008, pp. 1–8.Search in Google Scholar

[6] X. Huang, Mean-Entropy Models for Fuzzy Portfolio Selection, IEEE Transactions on Fuzzy Systems, vol. 16, 2008, pp. 1096–1101.Search in Google Scholar

[7] X. Huang, Minimax mean-variance models for fuzzy portfolio selection, Soft Computing, vol. 15, no. 2,2010, pp. 251–260.Search in Google Scholar

[8] X. Huang, Portfolio Analysis: From Probabilistic to Credibilistic and Uncertain Approaches, ser. Studies in Fuzziness and Soft Computing, Springer, 2010.Search in Google Scholar

[9] X. Li, Z. Qin, and S. Kar, Mean-variance-skewness model for portfolio selection with fuzzy returns, European Journal of Operational Research, vol. 202, no. 1, 2010, pp. 239–247.Search in Google Scholar

[10] P. Koprinkova, Membership functions shape and its influence on the dynamical behaviour of fuzzy logic controller, Cybernetics and Systems: An International Journal, vol. 2, no. 31,1952, pp. 161–173.Search in Google Scholar

[11] J. Marshall, M. Kazerani, and R. Shatshat, Investigation of membership function shapes in a fuzzy-controlled hvdc system, Industrial Electronics, 2006 IEEE International Symposium on, vol. 3, 2006, pp. 1800–1805.Search in Google Scholar

[12] M. Multani, J. Ren, and V. Sood, Fuzzy logic (fl) controlled hvdc system-influence of shape ans distribution of membership functions (mfs) in Electrical and Computer Engineering (CCECE), 2010 23rd Canadian Conference on, 2010, pp. 1–7.Search in Google Scholar

[13] B. Liu, Uncertainty Theory, ser. Studies in Fuzziness and Soft Computing. Springer, 2007.Search in Google Scholar

[14] P. Li and B. Liu, Entropy of credibility distributions for fuzzy variables, Fuzzy Systems, IEEE Transactions on, vol. 16, no. 1, 2008 pp. 123–129.Search in Google Scholar

[15] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics Bulletin, vol. 1, no. 6, 1945, pp. 8083.Search in Google Scholar

[16] S. Wang, J. Watada, and W. Pedrycz, Value-at-Risk-Based Two-Stage Fuzzy Facility Location Problems, IEEE Transactions on Industrial Informatics, vol. 5, 2009, pp. 465–482.Search in Google Scholar

[17] J. Peng, Measuring Fuzzy Risk by Credibilistic Value at Risk, in International Conference on Innovative Computing, Information and Control, 2008.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo