1. bookVolume 65 (2017): Issue 3 (September 2017)
Journal Details
First Published
28 Mar 2009
Publication timeframe
4 times per year
access type Open Access

Impacts of thinning of a Mediterranean oak forest on soil properties influencing water infiltration

Journal Details
First Published
28 Mar 2009
Publication timeframe
4 times per year

In Mediterranean ecosystems, special attention needs to be paid to forest–water relationships due to water scarcity. In this context, Adaptive Forest Management (AFM) has the objective to establish how forest resources have to be managed with regards to the efficient use of water, which needs maintaining healthy soil properties even after disturbance. The main objective of this investigation was to understand the effect of one of the AFM methods, namely forest thinning, on soil hydraulic properties. At this aim, soil hydraulic characterization was performed on two contiguous Mediterranean oak forest plots, one of them thinned to reduce the forest density from 861 to 414 tree per ha. Three years after the intervention, thinning had not affected soil water permeability of the studied plots. Both ponding and tension infiltration runs yielded not significantly different saturated, Ks, and unsaturated, K−20, hydraulic conductivity values at the thinned and control plots. Therefore, thinning had no an adverse effect on vertical water fluxes at the soil surface. Mean Ks values estimated with the ponded ring infiltrometer were two orders of magnitude higher than K−20 values estimated with the minidisk infiltrometer, revealing probably soil structure with macropores and fractures. The input of hydrophobic organic matter, as a consequence of the addition of plant residues after the thinning treatment, resulted in slight differences in terms of both water drop penetration time, WDPT, and the index of water repellency, R, between thinned and control plots. Soil water repellency only affected unsaturated soil hydraulic conductivity measurements. Moreover, K−20 values showed a negative correlation with both WDPT and R, whereas Ks values did not, revealing that the soil hydrophobic behavior has no impact on saturated hydraulic conductivity.


Alonso-Sarría, F., Martínez-Hernández, C., Romero-Díaz, A., Cánovas-García, F., Gomariz-Castillo, F., 2016. Main environmental features leading to recent land abandonment in Murcia region (Southeast Spain). Land Degrad. Develop., 27, 654–670. DOI: 10.1002/ldr.2447.Search in Google Scholar

Angulo-Jaramillo, R., Vandervaere, J.-P., Roulier, S., Thony, J.-L., Gaudet, J.-P., Vauclin, M., 2000. Field measurement of soil surface hydraulic properties by disc and ring infiltrometers: A review and recent developments. Soil and Tillage Research, 55, 1–29. DOI: 10.1016/S0167-1987(00)00098-2.Search in Google Scholar

Angulo-Jaramillo, R., Bagarello, V., Iovino, M., Lassabatère, L., 2016. Infiltration Measurements for Soil Hydraulic Characterization. Springer International Publishing.Search in Google Scholar

Aussenac, G., Granier, A., 1988. Effects of thinning on water stress and growth in Douglas-fir. Canadian Journal of Forest Research, 18, 100–105. DOI: 10.1139/x88-015.Search in Google Scholar

Bachmann, J., Woche, S.K., Goebel, M.-O., Kirkham, M.B., Horton, R., 2003. Extended methodology for determining wetting properties of porous media. Water Resour. Res. 39, 1353. DOI: 10.1029/2003WR002143.Search in Google Scholar

Bagarello, V., Di Prima, S., Iovino, M., Provenzano, G., 2014. Estimating field-saturated soil hydraulic conductivity by a simplified Beerkan infiltration experiment. Hydrological Processes, 28, 1095–1103. DOI:10.1002/hyp.9649.Search in Google Scholar

Bautista, I., Pabón, C., Lull, C., González-Sanchís, M., Lidón, A., del Campo, A., 2015. Efectos de la gestión forestal en los flujos de nutrientes asociados al ciclo hidrológico en un bosque mediterráneo de Quercus Ilex. Cuadernos de la Sociedad Española de Ciencias Forestales, 41, 343–354.Search in Google Scholar

Benito Rueda, E., Rodríguez-Alleres, M., Varela Teijeiro, E., 2016. Environmental factors governing soil water repellency dynamics in a Pinus Pinaster plantation in NW Spain. Land Degrad. Develop., 27, 719–728. DOI:10.1002/ldr.2370Search in Google Scholar

Bens, O., Wahl, N.A., Fischer, H., Hüttl, R.F., 2006. Water infiltration and hydraulic conductivity in sandy cambisols: impacts of forest transformation on soil hydrological properties. Eur. J. Forest Res., 126, 101–109. DOI: 10.1007/s10342-006-0133-7.Search in Google Scholar

Beven, K., Germann, P., 1982. Macropores and water flow in soils. Water Resour. Res., 18, 1311–1325. DOI: 10.1029/WR018i005p01311.Search in Google Scholar

Bisantino, T., Bingner, R., Chouaib, W., Gentile, F., Trisorio Liuzzi, G., 2015. Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size Mediterranean watershed using the Annagnps Model. Land Degrad. Develop., 26, 340–355. DOI:10.1002/ldr.2213.Search in Google Scholar

Blanco-Canqui, H., Lal, R., Shipitalo, M.J., 2007. Aggregate disintegration and wettability for long-term management systems in the Northern Appalachians. Soil Science Society of America Journal, 71, 759. DOI:10.2136/sssaj2006.0001.Search in Google Scholar

Blanco-Canqui, H., Lal, R., 2009. Extent of soil water repellency under long-term no-till soils. Geoderma, 149, 171–180. DOI: 10.1016/j.geoderma.2008.11.036.Search in Google Scholar

Bodí, M.B., Muñoz-Santa, I., Armero, C., Doerr, S.H., Mataix-Solera, J., Cerdà, A., 2013. Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena, 108, 14–25. DOI: 10.1016/j.catena.2012.04.002.Search in Google Scholar

Brooks, K.N., Folliott, P.F., Gregersen, H.M., DeBano, L.F., 2003. Hydrology and the Management of Watersheds. 3rd Ed. Wiley-Blackwell, Ames, 574 p.Search in Google Scholar

Buczko, U., Bens, O., 2006. Assessing soil hydrophobicity and its variability through the soil profile using two different methods. Soil Science Society of America Journal, 70, 718–727. DOI: 10.2136/sssaj2005.0183.Search in Google Scholar

Buczko, U., Benz, O., Hangen, E., Brunotte, J., Huttl, R., 2003. Infiltration and macroporosity of a silt loam soil under two contrasting tillage systems. Landbauforschung Volkenrode 53, 181–190.Search in Google Scholar

Buczko, U., Bens, O., Hüttl, R.F., 2006. Water infiltration and hydrophobicity in forest soils of a pine–beech transformation chronosequence. Journal of Hydrology, 331, 383–395. DOI: 10.1016/j.jhydrol.2006.05.023.Search in Google Scholar

Cammeraat, E.L.H., Cerdà, A., Imeson, A.C., 2010. Ecohydrological adaptation of soils following land abandonment in a semi-arid environment. Ecohydrol., 3, 421–430. DOI: 10.1002/eco.161.Search in Google Scholar

Capriel, P., Beck, T., Borchert, H., Gronholz, J., Zachmann, G., 1995. Hydrophobicity of the organic matter in arable soils. Soil Biology and Biochemistry, 27, 1453–1458. DOI: 10.1016/0038-0717(95)00068-P.Search in Google Scholar

Cerdà, A., 1996. Seasonal variability of infiltration rates under contrasting slope conditions in southeast Spain. Geoderma, 69, 217–232. DOI: 10.1016/0016-7061(95)00062-3.Search in Google Scholar

Cerdà, A., 1997. Seasonal changes of the infiltration rates in a Mediterranean scrubland on limestone. Journal of Hydrology, 198, 209–225. DOI: 10.1016/S0022-1694(96)03295-7.Search in Google Scholar

Cerdà, A., 1999. Simuladores de lluvia y su aplicación a la Geomorfologia: estado de la cuestión. [A review of the rainfall simulators and its applications to the Geomorphology]. Cuadernos de investigación geográfica, 25, 45–84. doi:http://dx.doi.org/10.18172/cig.1036Search in Google Scholar

Cerdà, A., Doerr, S.H., 2007. Soil wettability, runoff and erodibility of major dry-Mediterranean land use types on calcareous soils. Hydrol. Process., 21, 2325–2336. DOI: 10.1002/hyp.6755.Search in Google Scholar

Decagon Devices Inc., 2014. Minidisk Infiltrometer User’s Manual. Decagon Devices, Inc., Pullman, USA 24.Search in Google Scholar

Dekker, L.W., Doerr, S.H., Oostindie, K., Ziogas, A.K., Ritsema, C.J., 2001. Water repellency and critical soil water content in a dune sand. Soil Science Society of America Journal, 65, 1667–1674. DOI: 10.2136/sssaj2001.1667.Search in Google Scholar

DeBano, L.F., 1981. Water repellent soils: a state-of-the-art. US Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station.Search in Google Scholar

del Campo, A.D., Fernandes, T.J.G., Molina, A.J., 2014. Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: How much can be modified the water cycle through forest management? European Journal of Forest Research 133, 879–894. DOI: 10.1007/s10342-014-0805-7.Search in Google Scholar

Di Prima, S., 2015. Automated single ring infiltrometer with a low-cost microcontroller circuit. Computers and Electronics in Agriculture, 118, 390–395. DOI: 10.1016/j.compag.2015.09.022.Search in Google Scholar

Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M., Angulo-Jaramillo, R., 2016. Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma 262, 20–34. DOI: 10.1016/j.geoderma.2015.08.006.Search in Google Scholar

Dlapa, P., Bodí, M.B., Mataix-Solera, J., Cerdà, A., Doerr, S.H., 2013. FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition. Catena, 108, 35–43. DOI: 10.1016/j.catena.2012.02.011.Search in Google Scholar

Doerr, S.H., Shakesby, R.A., Walsh, R.P.D., 2000. Soil water repellency: its causes, characteristics and hydrogeomorphological significance. Earth-Science Reviews, 51, 33–65.Search in Google Scholar

Dunn, G.H., Phillips, R.E., 1991. Macroporosity of a welldrained soil under no-till and conventional tillage. Soil Science Society of America Journal, 55, 817–823. DOI: 10.2136/sssaj1991.03615995005500030031x.Search in Google Scholar

Ebel, B.A., Moody, J.A., 2013. Rethinking infiltration in wildfire-affected soils. Hydrol. Process., 27, 1510–1514. DOI: 10.1002/hyp.9696.Search in Google Scholar

Ebel, B.A., Moody, J.A., Martin, D.A., 2012. Hydrologic conditions controlling runoff generation immediately after wildfire. Water Resour. Res., 48, W03529. DOI: 10.1029/2011WR011470.Search in Google Scholar

Ellerbrock, R.H., Gerke, H.H., Bachmann, J., Goebel, M.-O., 2005. Composition of organic matter fractions for explaining wettability of three forest soils. Soil Science Society of America Journal, 69, 57–66. DOI: 10.2136/sssaj2005.0057.Search in Google Scholar

Elrick, D.E., Reynolds, W.D., 1992. Methods for analyzing constant-head well permeameter data. Soil Science Society of America Journal, 56, 320–323. DOI: 10.2136/sssaj1992.03615995005600010052x.Search in Google Scholar

Fernández, C., Vega, J.A., Jiménez, E., Fonturbel, T., 2011. Effectiveness of three post-fire treatments at reducing soil erosion in Galicia (NW Spain). Int. J. Wildland Fire, 20, 104–114.Search in Google Scholar

Gallart, F., Latron, J., Llorens, P., Rabadà, D., 1997. Hydrological functioning of mediterranean mountain basins in Vallcebre, Catalonia: Some challenges for hydrological modelling. Hydrol. Process., 11, 1263–1272. DOI: 10.1002/(SICI)1099-1085(199707)11:9<1263::AID-HYP556>3.0.CO;2-W.Search in Google Scholar

García, F.J.M., Dekker, L.W., Oostindie, K., Ritsema, C.J., 2005. Water repellency under natural conditions in sandy soils of southern Spain. Aust. J. Soil Res., 43, 291–296.Search in Google Scholar

García-Moreno, J., Gordillo-Rivero, Á.J., Zavala, L.M., Jordán, A., Pereira, P., 2013. Mulch application in fruit orchards increases the persistence of soil water repellency during a 15-years period. Soil and Tillage Research, 130, 62–68. DOI: 10.1016/j.still.2013.02.004.Search in Google Scholar

Gee, G.W., Bauder, J.W., 1986. Particle-size analysis. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. Soil Science Society of America, American Society of Agronomy, Madison, pp. 383–411.Search in Google Scholar

Giovannini, G., Lucchesi, S., 1983. Effect of fire on hydrophobic and cementing substances of soil aggregates. Soil Science, 136, 231–236.Search in Google Scholar

González-Peñaloza, F.A., Cerdà, A., Zavala, L.M., Jordán, A., Giménez-Morera, A., Arcenegui, V., 2012. Do conservative agriculture practices increase soil water repellency? A case study in citrus-cropped soils. Soil and Tillage Research, 124, 233–239. DOI: 10.1016/j.still.2012.06.015.Search in Google Scholar

González-Sanchis, M., del Campo, A., Bautista, I., Lidón, A., García, A., Llull, C., 2013. Hydrological silviculture effects in a natural Quercus ilex forest. Geophysical Research Abstracts, Vol. 15, EGU2013-313.Search in Google Scholar

González-Sanchis, M., del Campo, A., Lidón, A., Lull, C., Bautista, I., García-Prats, A., Francés, F., 2015. Incorporación de criterios eco-hidrológicos en la gestión forestal: adaptación a la escasez de agua de una masa marginal de encina. Cuadernos de la Sociedad Española de Ciencias Forestales, 41, 211–218.Search in Google Scholar

Gonzalez-Sosa, E., Braud, I., Dehotin, J., Lassabatère, L., Angulo-Jaramillo, R., Lagouy, M., Branger, F., Jacqueminet, C., Kermadi, S., Michel, K., 2010. Impact of land use on the hydraulic properties of the topsoil in a small French catchment. Hydrol. Process., 24, 2382–2399. DOI: 10.1002/hyp.7640.Search in Google Scholar

Hallett, P.D., Young, I.M., 1999. Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. European Journal of Soil Science, 50, 35–40. DOI: 10.1046/j.1365-2389.1999.00214.x.Search in Google Scholar

Hallett, P.D., Baumgartl, T., Young, I.M., 2001. Subcritical water repellency of aggregates from a range of soil management practices. Soil Science Society of America Journal, 65, 184–190.Search in Google Scholar

Heiskanen, J., Mäkitalo, K., 2002. Soil water-retention characteristics of Scots pine and Norway spruce forest sites in Finnish Lapland. Forest Ecology and Management, 162, 137–152. DOI: 10.1016/S0378-1127(01)00503-5.Search in Google Scholar

Hibbert, A.R., 1983. Water yield improvement potential by vegetation management on western rangelands. JAWRA Journal of the American Water Resources Association 19, 375–381. DOI: 10.1111/j.1752-1688.1983.tb04594.x.Search in Google Scholar

Keesstra, S., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J.N., Pachepsky, Y., van der Putten, W.H., Bardgett, R.D., Moolenaar, S., Mol, G., Jansen, B., Fresco, L.O., 2016a. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, 2, 111–128. DOI: 10.5194/soil-2-111-2016.Search in Google Scholar

Keesstra, S., Wittenberg, L., Maroulis, J., Sambalino, F., Malkinson, D., Cerdà, A., Pereira, P., 2016b. The influence of fire history, plant species and post-fire management on soil water repellency in a Mediterranean catchment: The Mount Carmel range, Israel. Catena. DOI: 10.1016/j.catena.2016.04.006.Search in Google Scholar

Kemper, W.D., Rosenau, R.C., 1986. Aggregate stability and size distribution. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. Soil Science Society of America, American Society of Agronomy, Madison, pp. 425–442.Search in Google Scholar

Lassabatère, L., Angulo-Jaramillo, R., Soria Ugalde, J.M., Cuenca, R., Braud, I., Haverkamp, R., 2006. Beerkan estimation of soil transfer parameters through infiltration experiments—BEST. Soil Science Society of America Journal, 70, 521–532. DOI: 10.2136/sssaj2005.0026.Search in Google Scholar

Lassabatere, L., Angulo-Jaramillo, R., Yilmaz, D., Winiarski, T., 2013. BEST method: Characterization of soil unsaturated hydraulic properties. In: Caicedo et al. (Eds): Advances in Unsaturated Soils. CRC Press, London, 527–532.Search in Google Scholar

Lassabatere, L., Yilmaz, D., Peyrard, X., Peyneau, P.E., Lenoir, T., Šimůnek, J., Angulo-Jaramillo, R., 2014. New analytical model for cumulative infiltration into dual-permeability soils. Vadose Zone J. 13. doi:10.2136/vzj2013.10.0181Search in Google Scholar

Lee, D.M., Elrick, D., Reynolds, W., Clothier, B.E., 1985. A comparison of three field methods for measuring saturated hydraulic conductivity. Canadian Journal of Soil Science, 65, 563–573.Search in Google Scholar

Lichner, L., Hallett, P., Feeney, D., Ďugová, O., Šír, M., Tesař, M., 2007. Field measurement of soil water repellency and its impact on water flow under different vegetation. Biologia, 62, 537–541. DOI: 10.2478/s11756-007-0106-4.Search in Google Scholar

Lilliefors, H.W., 1967. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62, 399–402. DOI: 10.1080/01621459.1967.10482916.Search in Google Scholar

Molina, A.J., del Campo, A.D., 2012. The effects of experimental thinning on throughfall and stemflow: A contribution towards hydrology-oriented silviculture in Aleppo pine plantations. Forest Ecology and Management, 269, 206–213. DOI: 10.1016/j.foreco.2011.12.037.Search in Google Scholar

Mollnau, C., Newton, M., Stringham, T., 2014. Soil water dynamics and water use in a western juniper (Juniperus occidentalis) woodland. Journal of Arid Environments, 102, 117–126. DOI: 10.1016/j.jaridenv.2013.11.015.Search in Google Scholar

Moody, J.A., Kinner, D.A., Úbeda, X., 2009. Linking hydraulic properties of fire-affected soils to infiltration and water repellency. Journal of Hydrology, 379, 291–303. DOI: 10.1016/j.jhydrol.2009.10.015.Search in Google Scholar

Nelson, D.W., Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter. In: Sparks, D.L. (Ed.): Methods of Soil Analysis. Part 3: Chemical Methods. Soil Science Society of America, American Society of Agronomy, Madison, pp. 961–1010.Search in Google Scholar

Nyman, P., Sheridan, G., Lane, P.N.J., 2010. Synergistic effects of water repellency and macropore flow on the hydraulic conductivity of a burned forest soil, south-east Australia. Hydrol. Process., 24, 2871–2887. DOI: 10.1002/hyp.7701.Search in Google Scholar

Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Arcenegui, V., Zavala, L.M., 2015. Modelling the impacts of wildfire on ash thickness in a short-term period. Land Degrad. Develop., 26, 180–192. DOI: 10.1002/ldr.2195.Search in Google Scholar

Pirastru, M., Niedda, M., Castellini, M., 2014. Effects of maquis clearing on the properties of the soil and on the nearsurface hydrological processes in a semi-arid Mediterranean environment. Journal of Agricultural Engineering, 45, 176. DOI: 10.4081/jae.2014.428.Search in Google Scholar

Prats, S.A., MacDonald, L.H., Monteiro, M., Ferreira, A.J.D., Coelho, C.O.A., Keizer, J.J., 2012. Effectiveness of forest residue mulching in reducing post-fire runoff and erosion in a pine and a eucalypt plantation in north-central Portugal. Geoderma, 191, 115–124. DOI: 10.1016/j.geoderma.2012.02.009.Search in Google Scholar

Rawitz, E., Hazan, A., 1978. The effect of stabilized, hydrophobic aggregate layer properties on soil water regime and seedling emergence. Soil Science Society of America Journal, 42, 787–793. DOI: 10.2136/sssaj1978.03615995004200050028x.Search in Google Scholar

Reynolds, W.D., Bowman, B.T., Brunke, R.R., Drury, C.F., Tan, C.S., 2000. Comparison of Tension Infiltrometer, Pressure Infiltrometer, and Soil Core Estimates of Saturated Hydraulic Conductivity. Soil Science Society of America Journal, 64, 478–484. DOI:10.2136/sssaj2000.642478x.Search in Google Scholar

Riechers, G.H., Beyers, J.L., Robichaud, P.R., Jennings, K., Kreutz, E., Moll, J., 2008. Effects of three mulch treatments on initial postfire erosion in north-central Arizona. In: Narog, M.G. (Ed.): Proc. 2002 Fire Conf.: Managing Fire and Fuels in the Remaining Wildlands and Open Spaces of the Southwestern United States. Gen. Tech. Rep. PSW-GTR-189. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA, pp. 107–113.Search in Google Scholar

Roberson, E.B., Shennan, C., Firestone, M.K., Sarig, S., 1995. Nutritional management of microbial polysaccharide production and aggregation in an agricultural soil. Soil Science Society of America Journal 59, 1587–1594. DOI: 10.2136/sssaj1995.03615995005900060012x.Search in Google Scholar

Ruiz-Colmenero, M., Bienes, R., Eldridge, D.J., Marques, M.J., 2013. Vegetation cover reduces erosion and enhances soil organic carbon in a vineyard in the central Spain. Catena, 104, 153–160. DOI: 10.1016/j.catena.2012.11.007.Search in Google Scholar

SAS Institute Inc., 1999. SAS/STAT User’s Guide, Volume 1, Version 8.2. Cary, NC: Statistical Analysis Systems (SAS) Institute Inc.Search in Google Scholar

Scott, D.F., 2000. Soil wettability in forested catchments in South Africa; as measured by different methods and as affected by vegetation cover and soil characteristics. Journal of Hydrology, 231–232, 87–104. DOI: 10.1016/S0022-1694(00)00186-4.Search in Google Scholar

Shakesby, R.A., Boakes, D.J., Coelho, C. de O., Gonçalves, A.B., Walsh, R.P., 1996. Limiting the soil degradational impacts of wildfire in pine and eucalyptus forests in Portugal. Applied Geography, 16, 337–355. DOI: 10.1016/0143-6228(96)00022-7.Search in Google Scholar

Šimon, T., Javůrek, M., Mikanová, O., Vach, M., 2009. The influence of tillage systems on soil organic matter and soil hydrophobicity. Soil and Tillage Research, 105, 44–48. DOI: 10.1016/j.still.2009.05.004.Search in Google Scholar

Skinner, F.A., 1979. Rothamsted studies of soil structure VII. European Journal of Soil Science, 30, 473–481. DOI: 10.1111/j.1365-2389.1979.tb01002.x.Search in Google Scholar

Tillman, R.W., Scotter, D.R., Wallis, M.G., Clothier, B.E., 1989. Water repellency and its measurement by using intrinsic sorptivity. Soil Research, 27, 637–644.Search in Google Scholar

Verheijen, F.G.A., Cammeraat, L.H., 2007. The association between three dominant shrub species and water repellent soils along a range of soil moisture contents in semi-arid Spain. Hydrol. Process., 21, 2310–2316. DOI: 10.1002/hyp.6760.Search in Google Scholar

Wang, Z., Feyen, J., Ritsema, C.J., 1998. Susceptibility and predictability of conditions for preferential flow. Water Resour. Res., 34, 2169–2182. DOI: 10.1029/98WR01761.Search in Google Scholar

Wang, Z., Wu, Q.J., Wu, L., Ritsema, C.J., Dekker, L.W., Feyen, J., 2000. Effects of soil water repellency on infiltration rate and flow instability. Journal of Hydrology, 231, 265–276.Search in Google Scholar

Wang, Y., Fan, J., Cao, L., Liang, Y., 2016. Infiltration and runoff generation under various cropping patterns in the Red Soil region of China. Land Degrad. Develop., 27, 83–91. DOI: 10.1002/ldr.2460.Search in Google Scholar

Warrick, A.W., 1998. Spatial variability. In: Hillel, D. (Ed.), Environmental Soil Physics. Academic Press, San Diego, CA, pp. 655–675.Search in Google Scholar

Watson, K.W., Luxmoore, R.J., 1986. Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Science Society of America Journal, 50, 578–582.Search in Google Scholar

Wessel, A.T., 1988. On using the effective contact angle and the water drop penetration time for classification of water repellency in dune soils. Earth Surf. Process. Landforms, 13, 555–561. DOI: 10.1002/esp.3290130609.Search in Google Scholar

Wu, L., Pan, L., 1997. A generalized solution to infiltration from single-ring infiltrometers by scaling. Soil Science Society of America Journal, 61, 1318–1322.Search in Google Scholar

Wu, L., Pan, L., Mitchell, J., Sanden, B., 1999. Measuring saturated hydraulic conductivity using a generalized solution for single-ring infiltrometers. Soil Science Society of America Journal, 63, 788–792. DOI: 10.2136/sssaj1999.634788x.Search in Google Scholar

Zhang, R., 1997. Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Science Society of America Journal 61, 1024–1030. DOI: 10.2136/sssaj1997.03615995006100040005x.Search in Google Scholar

Zhang, L., Dawes, W.R., Walker, G.R., 2001. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 37, 701–708. DOI: 10.1029/2000WR900325.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo