1. bookVolume 65 (2017): Issue 4 (December 2017)
Journal Details
License
Format
Journal
First Published
28 Mar 2009
Publication timeframe
4 times per year
Languages
English
access type Open Access

Turbulence intensity and spatial scales of turbulence after hydraulic jump over scour hole in rectangular channel

Published Online: 07 Nov 2017
Page range: 385 - 394
Received: 23 Feb 2016
Accepted: 25 Nov 2016
Journal Details
License
Format
Journal
First Published
28 Mar 2009
Publication timeframe
4 times per year
Languages
English

The study presents experimental investigations of spatial turbulence intensity and scales of turbulent eddies (macroeddies) in a rectangular channel and the impact of the hydraulic jump on their vertical and streamwise distributions over a flat and scoured bed. The results of four tests and two different discharge rates are presented. Intensive mixing caused by the hydraulic jump has an impact on the instantaneous velocity, turbulence intensity and sizes of macroeddies, as well as their vertical and longitudinal distributions along the channel. The largest differences in turbulence characteristics were reported directly after the hydraulic jump, above the eroded bed. The interaction between the stream of the increased turbulence and the bed is a direct cause of formation of scour downstream water structures, which has a great effect on overall flow characteristics. The scour hole that arose downstream the jump moderated, in a small degree, the turbulence intensity at its end. Just next to the hydraulic jump only the small longitudinal relative sizes of macroeddies were present, while at the end of the analyzed reach, downstream of the scour, the relative scale reached around 1.5 depth of the stream.

Keywords

Ali, H.M., Gendy, M.M.E., Mirdan, A.M.H., Ali, A.A.M., Abdelhaleem, F.S.F., 2014. Minimizing downstream scour due to submerged hydraulic jump using corrugated aprons. Ain Shams Engineering Journal, 5, 4, 1059-1069. DOI: 10.1016/j.asej.2014.07.007.10.1016/j.asej.2014.07.007Open DOISearch in Google Scholar

Buffin-Bélanger, T., Roy, A.G., 2005. 1 min in the life of a river: Selecting the optimal record length for the measurement of turbulence in fluvial boundary layers. Geomorphology, 68, 1-2, 77-94. DOI: 10.1016/j.geomorph.2004.09.032.10.1016/j.geomorph.2004.09.032Open DOISearch in Google Scholar

Czernuszenko, W., Holley, E.R., 2007. Open-channel turbulence measurements with a three-component acoustic Doppler velocimeter. Publs. Inst. Geophys. Pol. Acad. Sc., E-7 (401).Search in Google Scholar

Czernuszenko, W., Lebiecki, P., 1980. Turbulent characteristics of stream in open channel. Archiwum Hydrotechniki, 27, 1, 19-38. (In Polish.)Search in Google Scholar

Czernuszenko, W., Kozioł, A.P., Rowiński, P.M., 2007. Measurements of 3D turbulence structure in a compound channel. Arch. Hydroeng. Environ. Mech., 54, 1, 3-21. (In Polish.)Search in Google Scholar

Dargahi, B., 2003. Scour development downstream of a spillway. J. Hydraul. Res., 41, 417-426. DOI: 10.1080/00221680309499986.10.1080/00221680309499986Open DOISearch in Google Scholar

Franca, M.J., Brocchini, M., 2015. Turbulence in Rivers. In Rivers-Physical, Fluvial and Environmental Processes. Springer International Publishing, pp. 51-78. DOI: 10.1007/978-3-319-17719-9_2.10.1007/978-3-319-17719-9_2Open DOISearch in Google Scholar

Grinvald, D.I., Nikora, V.I., 1988. River Turbulence. Hydrometeoizdat, Leningrad, Russia.Search in Google Scholar

Kališ, J., 1961. Diminution de la turbulence derriere le ressaut. In: Rapport 111 IX Congres de IAHR, Dubrovnik.Search in Google Scholar

Kozioł, A.P., 2000. Longitudinal sizes of the largest eddies in the compound channel. Prz. Nauk. Wydz. Inż. Kształt. Środow., 18, 151-159. (In Polish.)Search in Google Scholar

Kozioł, A.P., 2008. Investigation of the time and spatial macroscale of turbulence in a compound channel. Acta Scientiarum Polonorum - Architectura, 7, 4, 15-23. (In Polish.)Search in Google Scholar

Kozioł, A.P., 2012. The Kolmogorov’s microscale eddies in a compound channel. Ann. Warsaw Univ. of Life Sci. - SGGW, Land Reclam., 44, 2, 121-132.Search in Google Scholar

Kozioł, A.P., 2013. Three-dimensional turbulence intensity in a compound channel. J. Hydraul. Eng., 139, 8, 852-864. DOI: 10.1061/(ASCE)HY.1943-7900.0000739.10.1061/(ASCE)HY.1943-7900.0000739Open DOISearch in Google Scholar

Kozioł, A.P., 2015. Scales of turbulent eddies in a compound channel. Acta Geophys., 63, 2, 514-32. DOI: 10.2478/s11600-014-0247-0.10.2478/s11600-014-0247-0Open DOISearch in Google Scholar

Kozioł, A.P., Kubrak, J., 2015. Measurements of Turbulence Structure in a Compound Channel. In: Rowiński, P., Radecki-Pawlik, A. (Eds.): Rivers - Physical, Fluvial and Environmental Processes, GeoPlanet. Earth and Planetary Sciences. Springer International Publishing Switzerland, pp. 229-254. DOI: 10.1007/978-3-319-17719-9_10.10.1007/978-3-319-17719-9_10Open DOISearch in Google Scholar

Kozioł, A., Urbański, J., Kiczko, A., Krukowski, K., Siwicki, P., 2016. Turbulent intensity and scales of turbulence after hydraulic jump in rectangular channel. Ann. Warsaw Univ. Life Sci. - SGGW, Land Reclam., 48, 2, 99-109. DOI: 10.1515/sggw-2016-0008.10.1515/sggw-2016-0008Open DOISearch in Google Scholar

Kumin, D.I., 1956. Turbulentnost i gaszenie energii pri sopraženi b’efow. 55th ed. Izviestia VNIIG.Search in Google Scholar

Liu, M., Rajaratnam, N., Zhu, D.Z., 2004. Turbulence Structure of Hydraulic Jumps of Low Froude Numbers. J. Hydraul. Eng., 130, 6, 511-520. http://dx.doi.org/10.1061/(ASCE)0733-9429(2004)130:6(511).10.1061/(ASCE)0733-9429(2004)130:6(511)Open DOISearch in Google Scholar

Mazurczyk, A., 2007. Scales of turbulence in compound channels withtrees on floodplains. Publs. Inst. Geophys. Pol. Acad. Sc., E-6(390), 1-8.Search in Google Scholar

McLean, S.R., Smith, J.D., 1979. Turbulence measurements in the boundary layer over a sand wave field. J. Geophys. Res., 84, 12, 7791-7808.10.1029/JC084iC12p07791Open DOISearch in Google Scholar

Nezu, I., Nakagawa, H., 1993. Turbulence in Open-Channel Flows. IAHR Monograph. Balkema, Rotterdam, The Netherlands, 1-281.Search in Google Scholar

Nikora, V.I., 1985. On the turbulence structure of river flows with sandwave bottom. Meteorol. Gidrol., 6, 98-103.Search in Google Scholar

Nikora, V.I., 2007. 3 Hydrodynamics of gravel-bed rivers: scale issues. Dev Earth Surf Process, 11, 61-81.Search in Google Scholar

Nikora, V.I., Smart, G.M., 1997. Turbulence characteristics of New Zealand gravel-bed rivers. J. Hydraul. Eng., 123, 9, 764-773. DOI: 10.1061/(ASCE)0733-9429(1997)123:9(764).10.1061/(ASCE)0733-9429(1997)123:9(764)Open DOISearch in Google Scholar

Nikora, V.I., Rowiński, P., Sukhodolov, A., Krasuski, D., 1994. Structure of river turbulence behind warm-water discharge. J. Hydraul. Eng., 120, 2, 191-208. DOI: 10.1061/(ASCE)0733-9429(1994)120:2(191).10.1061/(ASCE)0733-9429(1994)120:2(191)Open DOISearch in Google Scholar

Oliveto, G., Comuniello, V., 2009. Local scour downstream of positive-step stilling basins. J. Hydraul Eng., 135, 10, 846-851. DOI: 10.1061/(ASCE)HY.1943-7900.0000078.Search in Google Scholar

Oliveto, G., Comuniello, V., Bulbule, T., 2011. Timedependent local scour downstream of positive-step stilling basins. J. Hydraul Res., 49, 1, 105-112. DOI: 10.1080/00221686.2010.538593.10.1080/00221686.2010.538593Open DOISearch in Google Scholar

Pagliara, S., Palermo, M., 2013. Rock grade control structures and stepped gabion weirs: Scour analysis and flow features. Acta Geophys., 61, 1, 126-150. DOI: 10.2478/s11600-012-0066-0.10.2478/s11600-012-0066-0Open DOISearch in Google Scholar

Pagliara, S., Lotti, I., Palermo, M., 2008. Hydraulic jump on rough bed of stream rehabilitation structures. Journal of Hydro-Environment Research, 2, 1, 29-38. DOI: 10.1016/j.jher.2008.06.001.10.1016/j.jher.2008.06.001Open DOISearch in Google Scholar

Rowiński, P.M., Mazurczyk, A., 2006. Turbulent characteristics of flows through emergent vegetation. In: Ferreira, R., Alves, E., Leal, J., Cardoso, A. (Eds.): River Flow 2006. Taylor & Francis Group, London.Search in Google Scholar

Rowiński, P., Czernuszenko, W., Kozioł, A.P., Kuśmierczuk, K., Kubrak, J., 1998. Longitudinal turbulence characteristics in a compound channel under various roughness conditions. In: Proc. 3rd Int. Conf. on Hydro-Science and -Engineering, Cottbus/Berlin, Germany.Search in Google Scholar

Rowiński, P.M., Czernuszenko, W., Kozioł, A.P., Kubrak, J., 2002. Properties of a streamwise turbulent flow field in an open two-stage channel. Arch. Hydroeng. Environ. Mech., 49, 2, 37-57.Search in Google Scholar

Sanjou, M., Nezu, I., Suzuki, S., Itai, I., 2010. Turbulence structure of compound open-channel flows with one-line emergent vegetation. Journal of Hydrodynamics, Ser. B, 22, 5, 577-581. DOI: 10.1016/S1001-6058(09)60255-9.10.1016/S1001-6058(09)60255-9Open DOISearch in Google Scholar

Shiono, K., Knight, D.W., 1991. Turbulent open-channel flows with variable depth across the channel. J. Fluid Mech., 222, 617-646. DOI: 10.1017/S0022112091001246.10.1017/S0022112091001246Open DOISearch in Google Scholar

Siniscalchi, F., Nikora, V.I. Aberle, J., 2012. Plant patch hydrodynamics in streams: Mean flow, turbulence, and drag forces. Water Resour. Res., 48, 1, W01513. DOI: 10.1029/2011WR011050.10.1029/2011WR011050Open DOISearch in Google Scholar

Urbański, J., 2006. Investigation of turbulence intensity of stream below hydraulic jump on the dam model. In: Problemy Hydrotechniki - Modelowanie i hydroinformatyka oraz wybrane zagadnienia ochrony przeciwpowodziowej. Dolnośląskie Wydawnictwo Edukacyjne, Wrocław, Poland, pp. 363-370. (In Polish.)Search in Google Scholar

Urbański, J., 2008. Influence of turbulence of flow on sizes local scour on weir model. Acta Sci. Pol., 7, 2, 3-12. (In Polish.)Search in Google Scholar

Urbański, J., 2010. Distributions of flow velocities on the length of local scour in downstream on weir model. Scientific Review - Engineering and Environmental Sciences, 47, 1, 34-42. (In Polish.)Search in Google Scholar

Urbański, J., 2012. Verification of criteria for determining the length of bed protection in downstream of the weir. Scientific Review - Engineering and Environmental Sciences, 55, 55, 18-26. (In Polish.)Search in Google Scholar

Wu, S., Rajaratnam, N., 1996. Transition from hydraulic jump to open channel flow. J. Hydraul. Eng., 122, 9, 526-528. DOI: 10.1061/(ASCE)0733-9429(1996)122:9(526).10.1061/(ASCE)0733-9429(1996)122:9(526)Open DOISearch in Google Scholar

Yokosi, S., 1967. The structure of river turbulence. Bull. Dis. Prev. Res. Inst., Kyoto, Japan, 17, 2, 1-29.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo