1. bookVolume 60 (2016): Issue 3 (September 2016)
Journal Details
License
Format
Journal
eISSN
2450-8608
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
access type Open Access

Identification of novel pathways in pathogenesis of ketosis in dairy cows via iTRAQ/MS

Published Online: 23 Sep 2016
Page range: 309 - 314
Received: 08 Oct 2015
Accepted: 25 Jul 2016
Journal Details
License
Format
Journal
eISSN
2450-8608
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Abstract

Introduction: To identify novel pathways involved in the pathogenesis of ketosis, an isobaric tag for relative and absolute quantitation/mass spectrometry was used to define differences in protein expression profiles between healthy dairy cows and those with clinical or subclinical ketosis.

Material and Methods: To define the novel pathways of ketosis in cattle, the differences in protein expression were analysed by bioinformatics. Go Ontology and Pathway analysis were carried out for enrich the role and pathway of the different expression proteins between healthy dairy cows and those with clinical or subclinical ketosis.

Results: Differences were identified in 19 proteins, 16 of which were relatively up-regulated while the remaining 3 were relatively down-regulated. Sorbitol dehydrogenase (SORD) and glyceraldehyde-3-phosphate dehydrogenase (G3PD) were up-regulated in cattle with ketosis. SORD and G3PD promoted glycolysis. These mechanisms lead to pyruvic acid production increase and ketone body accumulation.

Conclusion: The novel pathways of glycolysis provided new evidence for the research of ketosis.

Keywords

1. Andersson L.: Subclinical ketosis in dairy cows. Vet Clin North Am Food Anim Pract 1988, 4, 233–251.10.1016/S0749-0720(15)31046-XSearch in Google Scholar

2. Annison E.F., Bryden W.L.: Perspectives on ruminant nutrition and metabolism I. Metabolism in the rumen. Nutr Res Rev 1998, 11, 173–198.10.1079/NRR1998001419094246Search in Google Scholar

3. Azam S., Jouvet N., Jilani A., Vongsamphanh R., Yang X., Yang S., Ramotar D.: Human glyceraldehyde-3-phosphate dehydrogenase plays a direct role in reactivating oxidized forms of the DNA repair enzyme APE1. J Biol Chem 2008, 283, 30632–30641.10.1074/jbc.M801401200266215318776186Search in Google Scholar

4. Backlund M., Paukku K., Daviet L., De Boer R.A., Valo E., Hautaniemi S., Kalkkinen N., Ehsan A., Kontula K., Lehtonen J.Y.A.: Posttranscriptional regulation of angiotensin II type 1 receptor expression by glyceraldehyde 3-phosphate dehydrogenase. Nucleic Acids Res 2009, 37, 2346–2358.10.1093/nar/gkp098267344019246543Search in Google Scholar

5. Bonafe N., Gilmore-Hebert M., Folk N.L., Azodi M., Zhou Y., Chambers S.K.: Glyceraldehyde-3-phosphate dehydrogenase binds to the AU-rich 3′ UTR of CSF-1 mRNA in human ovarian cancer cells: possible role in CSF-1 post-transcriptional regulation and tumor phenotype. Cancer Res 2005, 65, 3762–3771.10.1158/0008-5472.CAN-04-395415867372Search in Google Scholar

6. Bose T., Chakraborti A.S.: Fructose-induced structural and functional modifications of hemoglobin: implication for oxidative stress in diabetes mellitus. Biochim Biophys Acta 2008, 1780, 800–808.10.1016/j.bbagen.2008.02.00118339326Search in Google Scholar

7. Chakravarti R., Aulak K.S., Fox P.L., Stuehr D.J.: GAPDH regulates cellular heme insertion into inducible nitric oxide synthase. Proc Nat Acad Sci 2010, 107, 18004–1809.10.1073/pnas.1008133107296420020921417Search in Google Scholar

8. Demarse N.A., Ponnusamy S., Spicer E.K., Apohan E., Baatz J.E., Ogretmen B., Dacies C.: Direct binding of glyceraldehyde 3-phosphate dehydrogenase to telomeric DNA protects telomeres against chemotherapy-induced rapid degradation. J Mol Biol 2009, 394, 789–803.10.1016/j.jmb.2009.09.062278966419800890Search in Google Scholar

9. Dills W.L.: Protein fructosylation: fructose and the Maillard reaction. Am J Clin Nutr 1993, 58, 779S–787S.10.1093/ajcn/58.5.779S8213610Search in Google Scholar

10. Harada N., Yasunaga R., Higashimura Y., Yamaji R., Fujimoto K., Moss J., Inui H., Nakano Y.: Glyceraldehyde-3-phosphate dehydrogenase enhances transcriptional activity of androgen receptor in prostate cancer cells. J Biol Chem 2007, 282, 22651–22261.10.1074/jbc.M61072420017553795Search in Google Scholar

11. Heitzman R.J., Baird G.D.: The effects of glucocorticoid administration on hepatic intermediary metabolism, blood glucose levels and milk yield in the dairy cow. J Endocrinol 1969, 45, Suppl 18Search in Google Scholar

12. Huang J., Luo G., Zhang Z., Wang X., Ju Z., Qi C., Zhang Y., Wang C., Li R., Li J.: iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus. BMC Genom 2014, 15, 839.10.1186/1471-2164-15-839419867525273983Search in Google Scholar

13. Kondo S., Kubota S., Mukudai Y., Nishida T., Yoshihama Y., Shirota T., Shintani S., Takigawa M.: Binding of glyceraldehyde-3-phosphate dehydrogenase to the cis-acting element of structure-anchored repression in ccn2 mRNA. Biochem Biophys Res Commun 2011, 405, 382–387.10.1016/j.bbrc.2011.01.03421236242Search in Google Scholar

14. Liu Y., Duan X., Liu X., Guo J., Wang H., Li Z., Yang J.: Genetic variations in insulin-like growth factor binding protein acid labile subunit gene associated with growth traits in beef cattle (Bos taurus) in China. Gene 2014, 540, 246–250.10.1016/j.gene.2014.01.04424463019Search in Google Scholar

15. Meyer-Siegler K., Mauro D.J., Seal G., Wurzer J., Sirover M.A.: A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc Nat Acad Sci 1991, 88, 8460–8464.10.1073/pnas.88.19.8460525281924305Search in Google Scholar

16. Obrosova I.G.: Increased sorbitol pathway activity generates oxidative stress in tissue sites for diabetic complications. Antioxid Redox Sign 2005, 7, 1543-155210.1089/ars.2005.7.154316356118Search in Google Scholar

17. Raje C.I., Kumar S., Harle A., Nanda J.S., Raje M.: The macrophage cell surface glyceraldehyde-3-phosphate dehydrogenase is a novel transferrin receptor. J Biol Chem 2007, 282, 3252–3261.10.1074/jbc.M60832820017121833Search in Google Scholar

18. Ramana K.V., Srivastava S.K.: Aldose reductase: a novel therapeutic target for inflammatory pathologies. Int J Biochem Cell Biol 2010, 42, 17–20.10.1016/j.biocel.2009.09.009278765319778627Search in Google Scholar

19. Reinhardt T.A., Sacco R.E., Nonnecke B.J., Lippolis J.D.: Bovine milk proteome: quantitative changes in normal milk exosomes, milk fat globule membranes and whey proteomes resulting from Staphylococcus aureus mastitis. J Proteom 2013, 82, 141–154.10.1016/j.jprot.2013.02.01323459212Search in Google Scholar

20. Rodríguez-Pascual F., Redondo-Horcajo M., Magán-Marchal N., Lagares D., Martínez-Ruiz A., Kieinert H., Lamas S.: Glyceraldehyde-3-phosphate dehydrogenase regulates endothelin-1 expression by a novel, redox-sensitive mechanism involving mRNA stability. Mol Cell Biol 2008, 28, 7139–7155.10.1128/MCB.01145-08259338418809573Search in Google Scholar

21. Schalkwijk C.G., Stehouwer C.D.A., van Hinsbergh V.W.M.: Fructose mediated non-enzymatic glycation: sweet coupling or bad modification. Diabetes Metab Res Rev 2004, 20, 369–382.10.1002/dmrr.48815343583Search in Google Scholar

22. Schmidt A.M., Hori O., Brett J., Yan S.D., Wautier J.L., Stern D.: Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler ThromVasc Biol 1994, 14, 1521–1528.10.1161/01.ATV.14.10.1521Search in Google Scholar

23. Singh R., Green M.R.: Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 1993, 259, 365–368.10.1126/science.8420004Search in Google Scholar

24. Suarez G., Rajaram R., Oronsky A.L., Gawinowicz M.A.: Nonenzymatic glycation of bovine serum albumin by fructose (fructation). Comparison with the Maillard reaction initiated by glucose. J Biol Chem 1989, 264, 3674–3679.10.1016/S0021-9258(19)84904-9Search in Google Scholar

25. Sun L.W., Zhang H.Y., Wu L., Shu S., Xia C., Xu C., Zheng J.S.: 1 H-Nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and subclinical ketosis. J Dairy Sci 2014, 97, 1552–1562.10.3168/jds.2013-6757Search in Google Scholar

26. Tisdale E.J.: Glyceraldehyde-3-phosphate dehydrogenase is required for vesicular transport in the early secretory pathway. J Biol Chem 2001, 276, 2480–2486.10.1074/jbc.M007567200Search in Google Scholar

27. Vicente F., Rodríguez M.L., Martínez-Fernández A., Soldado A., Argamentería A., Peláez M., de la Roza-Delgado B.: Subclinical ketosis on dairy cows in transition period in farms with contrasting butyric acid contents in silages. Sci World J 2014.10.1155/2014/279614Search in Google Scholar

28. Yang Q.S., Wu J.H., Li C.Y., Wei Y.R., Sheng O., Hu C.H., Kuang R.B., Huang Y.H., Peng X.X., McCardie J.A.: Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB Group) seedlings. Mol Cell Proteom 2012, 11, 1853–1869.10.1074/mcp.M112.022079Search in Google Scholar

29. Zhang Z.G., Xue J.D., Gao R.F., Liu J.Y., Wang J.G., Yao C.Y., Liu Y., Li X.W., Li X.B., Liu G.W.: Evaluation of the difference of L-selectin, tumor necrosis factor-α and sialic acid concentration in dairy cows with subclinical ketosis and without subclinical ketosis. Pak Vet J 2013, 33, 225–228.Search in Google Scholar

30. Zheng L., Roeder R.G., Luo Y.: S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 2003, 114, 255–266.10.1016/S0092-8674(03)00552-XSearch in Google Scholar

31. Zhou Y., Yi X., Jha'Nae B.S., Bonafe N., Gilmore-Hebert M., McAlpine J., Chambers S.K.: The multifunctional protein glyceraldehyde-3-phosphate dehydrogenase is both regulated and controls colony-stimulating factor-1 messenger RNA stability in ovarian cancer. Mol Cancer Res 2008, 6, 1375–1384.10.1158/1541-7786.MCR-07-2170258701918708368Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo