1. bookVolume 17 (2017): Issue 1 (February 2017)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Characterization of the Embryogenic Tissue of the Norway Spruce Including a Transition Layer between the Tissue and the Culture Medium by Magnetic Resonance Imaging

Published Online: 23 Feb 2017
Volume & Issue: Volume 17 (2017) - Issue 1 (February 2017)
Page range: 19 - 26
Received: 23 Aug 2016
Accepted: 25 Jan 2017
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Abstract

The paper describes the visualization of the cells (ESEs) and mucilage (ECMSN) in an embryogenic tissue via magnetic resonance imaging (MRI) relaxometry measurement combined with the subsequent multi-parametric segmentation. The computed relaxometry maps T1 and T2 show a thin layer (transition layer) between the culture medium and the embryogenic tissue. The ESEs, mucilage, and transition layer differ in their relaxation times T1 and T2; thus, these times can be used to characterize the individual parts within the embryogenic tissue. The observed mean values of the relaxation times T1 and T2 of the ESEs, mucilage, and transition layer are as follows: 1469 ± 324 and 53 ± 10 ms, 1784 ± 124 and 74 ± 8 ms, 929 ± 164 and 32 ± 4.7 ms, respectively. The multi-parametric segmentation exploiting the T1 and T2 relaxation times as a classifier shows the distribution of the ESEs and mucilage within the embryogenic tissue. The discussed T1 and T2 indicators can be utilized to characterize both the growth-related changes in an embryogenic tissue and the effect of biotic/abiotic stresses, thus potentially becoming a distinctive indicator of the state of any examined embryogenic tissue.

Keywords

[1] Mac Fall, J.S., Van As, H. (1996). Magnetic resonance imaging of plants. In Nuclear Magnetic Resonance in Plant Biology. The American Society of Plant Physiologists, 33-76.Search in Google Scholar

[2] Scheenen, T., Vergeldt, F., Heemskerk, A., Van As, H. (2007). Intact plant magnetic resonance imaging to study dynamics in long-distance sap flow and flow-conducting surface area. Plant Physiology, 144, 1157-1165.10.1104/pp.106.089250191415817449653Search in Google Scholar

[3] Ionenko, I., Anisimov, A., Dautova, N. (2010). Effect of temperature on water transport through aquaporins. Biologia Plantarum, 54, 488-494.10.1007/s10535-010-0086-zSearch in Google Scholar

[4] Pu, Y., Chen, F., Ziebell, A., Davison, B., Ragauskas, A. (2009). NMR characterization of C3H and HCT down-regulated alfalfa lignin. BioEnergy Research, 2, 198-208.10.1007/s12155-009-9056-8Search in Google Scholar

[5] Zulak, K., Weljie, A., Vogel, H., Facchini, P. (2008). Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures. BMC Plant Biology, 8, 5.10.1186/1471-2229-8-5225795218211706Search in Google Scholar

[6] Lambert, J., Lampen, P., von Bohlen, A., Hergenroder, R. (2006). Two- and three-dimensional mapping of the iron distribution in the apoplastic fluid of plant leaf tissue by means of magnetic resonance imaging. Analytical and Bioanalytical Chemistry, 384, 231-236.10.1007/s00216-005-0119-116240112Search in Google Scholar

[7] Glidewell, S., Möller, M., Duncan, G., Mill, R., Masson, D., Williamson, B. (2002). NMR imaging as a tool for noninvasive taxonomy: Comparison of female cones of two Podocarpaceae. New Phytologist, 154, 197-207.10.1046/j.1469-8137.2002.00356.xSearch in Google Scholar

[8] Šupálková, V., Petřek, J., Baloun, J., Adam, V., Bartušek, K., Trnková, L., Beklová, M., Diopan, V., Havel, L., Kizek, R. (2007). Multi-instrumental investigation of affecting of early somatic embryos of spruce by cadmium (II) and lead (II) ions. Sensors, 7, 743-759.10.3390/s7050743Search in Google Scholar

[9] Šebánek, J., Sladký, Z., Procházka, S. (1991). Experimental Morphogenesis and Integration of Plants: Terofal. 1st Edition. Prague, Czech Republic: Academia; Elsevier.Search in Google Scholar

[10] Dostál, R. (1967). On Integration in Plants. 1st Edition. Harvard University Press.Search in Google Scholar

[11] Hřib, J., Vooková, B., Neděla, V. (2015). Imaging of native early embryogenic tissue of Scots pine (Pinus sylvestris L.) by ESEM. Open Life Sciences, 10, 285-290.10.1515/biol-2015-0028Search in Google Scholar

[12] Šamaj, J., Salaj, T., Matúšová, R., Salaj, J., Takáč, T., Šamajová, O., Volkmann, D. (2008). Arabinogalactan-protein epitope Gal4 is differentially regulated and localized in cell lines of hybrid fir (Abies alba x Abies cephalonica) with different embryogenic and regeneration potential. Plant Cell Reports, 27, 221-229.10.1007/s00299-007-0429-117943290Search in Google Scholar

[13] Neděla, V., Hřib, J., Vooková, B. (2012). Imaging of early conifer embryogenic tissues with the environmental scanning electron microscope. Biologia Plantarum, 56, 595-598.10.1007/s10535-012-0062-xSearch in Google Scholar

[14] Neděla, V., Hřib, J., Havel, L., Runštuk, J. (2013) Early state of spruce somatic embryos in native state observed using the ESEM and Cryo-SEM. Microscopy and Microanalysis, 19 (suppl. 2), 20-21.10.1017/S1431927613002092Search in Google Scholar

[15] Neděla, V., Tihlaříková, E., Hřib, J. (2015). The low-temperature method for study of coniferous tissues in the environmental scanning electron microscope. Microscopy Research Techniques, 78 (1), 13-21.10.1002/jemt.22439Search in Google Scholar

[16] Egertsdotter, U., von Arnold, S. (1995). Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiologia Plantarum, 93, 334-345.10.1111/j.1399-3054.1995.tb02237.xSearch in Google Scholar

[17] Clarke, A., Anderson, R.L., Stone, B. (1979). Form and function of arabinogalactans and arabinogalactan-proteins. Phytochemistry, 18, 521-540.10.1016/S0031-9422(00)84255-7Search in Google Scholar

[18] Karácsonyi, Š., Pätoprstý, V., Kubačková, M. (1998). Structural study on arabinogalactan-proteins from Picea abies L. Karst. Carbohydrate Research, 307, 271-279.10.1016/S0008-6215(98)00052-4Search in Google Scholar

[19] Seifert, G., Roberts, K. (2007). The biology of arabinogalactan proteins. Annual Review of Plant Biology, 58, 137-161.10.1146/annurev.arplant.58.032806.103801Search in Google Scholar

[20] Mikulka, J., Hutova, E., Korinek, R., Marcon, P., Dokoupil, Z., Gescheidtova, E., Havel, L., Bartusek, K. (2016). MRI-based visualization of the relaxation times of early somatic embryos. Measurement Science Review, 16, 54-61.10.1515/msr-2016-0008Search in Google Scholar

[21] von Arnold, S. (1987). Improved efficiency of somatic embryogenesis in mature embryos of Picea abies (L.) Karst. Journal of Plant Physiology, 128, 233-244.10.1016/S0176-1617(87)80237-7Search in Google Scholar

[22] Havel, L., Durzan, D. (1996). Apoptosis during diploid parthenogenesis and early somatic embryogenesis of Norway spruce. International Journal of Plant Sciences, 157, 8-16.10.1086/297315Search in Google Scholar

[23] Vlašínová, H., Mikulecký, M., Havel, L. (2003). The mitotic activity of Norway spruce polyembryonic culture oscillates during the synodic lunar cycle. Biologia Plantarum, 47, 475-476.10.1023/B:BIOP.0000023900.49134.2dSearch in Google Scholar

[24] Bloch, F. (1946). Nuclear Induction. Physical Review, 70, 460-473.10.1103/PhysRev.70.460Search in Google Scholar

[25] Xiong, T., Zhang, L., Yi, Z. (2016). Double Gaussian mixture model for image segmentation with spatial relationship. Journal of Visual Communication and Image Representation, 34, 135-145.10.1016/j.jvcir.2015.10.018Search in Google Scholar

[26] Dubois, T., Dubois, J., Guedira, M., Diop, A., Vasseur, J. (1992). SEM characterization of an extracellular matrix around somatic proembryos in roots of Cichorium. Annals of Botany, 70, 119-124.10.1093/oxfordjournals.aob.a088447Search in Google Scholar

[27] Šamaj, J., Bobák, M., Blehová, A., Krištin, J, Auxtová-Šamajová, O. (1995). Developmental SEM observations of an extracellular matrix in embryogenic calli of Drosera rotundifolia and Zea mays. Protoplasma, 186, 45-49.10.1007/BF01276934Search in Google Scholar

[28] Baluška, F., Šamaj, J., Wojtaszek, P., Volkmann, D., Menzel, D. (2003). Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiology, 133, 482-491.10.1104/pp.103.02725052387514555777Search in Google Scholar

[29] Dostál, R. (1959). O celistvosti rostliny (On Integration in Plants). Prague, Czech Republic: SZN. (in Czech)Search in Google Scholar

[30] Verdeil, J., Hocher, V., Huet, C., Grosdemange, F., Escoute, J., Ferrière, N., Nicole, M. (2001). Ultrastructural changes in coconut calli associated with the acquisition of embryogenic competence. Annals of Botany, 88, 9-18.10.1006/anbo.2001.1408Search in Google Scholar

[31] Šamaj, J., Baluška, F., Bobák, M., Volkmann, D. (1999). Extracellular matrix surface network of embryogenic units of friable maize callus contains arabinogalactan-proteins recognized by monoclonal antibody JIM 4. Plant Cell Reports, 18, 369-374.10.1007/s002990050588Search in Google Scholar

[32] Davies, J. (2001). Extracellular matrix. In Encyclopedia of Life Sciences. Nature Publishing Group.10.1038/npg.els.0001274Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo