1. bookVolume 60 (2015): Issue 2 (June 2015)
Journal Details
License
Format
Journal
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Shock dynamics induced by double-spot laser irradiation of layered targets

Journal Details
License
Format
Journal
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English

We studied the interaction of a double-spot laser beam with targets using the Prague Asterix Laser System (PALS) iodine laser working at 0.44 μm wavelength and intensity of about 1015 W/cm2. Shock breakout signals were recorder using time-resolved self-emission from target rear side of irradiated targets. We compared the behavior of pure Al targets and of targets with a foam layer on the laser side. Results have been simulated using hydrodynamic numerical codes.

Keywords

1. Stevenson, R. M., Pepler, D. A., Danson, C. N., Norman, M. J., Bett, T. H., & Ross, I. N. (1994). Binary-phase zone plate arrays for the generation of uniform focal profiles. Opt. Lett., 19(6), 363–365.Search in Google Scholar

2. Koenig, M., Faral, B., Boudenne, J. M., Batani, D., Benuzzi, A., & Bossi, S. (1994). Optical smoothing techniques for shock wave generation in laser-produced plasmas. Phys. Rev. E, 50(5), R3314.Search in Google Scholar

3. Batani, D., Bleu, C., & Lower, Th. (2002). Design, simulation and application of phase plates. Eur. Phys. J. D, 19, 231–243.Search in Google Scholar

4. Kato, Y., Mima, K., Miyanaga, N., Arinaga, S., Kitagawa, Y., Nakatsuka, M., & Yamanaka, C. (1984). Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett., 53(11), 1057.Search in Google Scholar

5. Dixit, S. N., Lawson, J. K., Manes, K. R., Powell, H. T., & Nugent, A. (1994). Kinoform phase plates for focal plane irradiance profile control. Opt. Lett., 19(6), 417–419.Search in Google Scholar

6. Skupsky, S., Short, R. W., & Kessler, T. (1989). Improved laser-beam uniformity using the angular dispersion of frequency modulated light. J. Appl. Phys., 66, 3456.Search in Google Scholar

7. Lehmberg, R. H., & Obenschain, S. P. (1983). Use of induced spatial incoherence for uniform illumination of laser fusion targets. Opt. Commun., 46, 27–31.Search in Google Scholar

8. Willi, O., Afshar-rad, T., Coe, S., & Giulietti, A. (1990). Study of instabilities in long scale-length plasmas with and without laser-beam-smoothing techniques. Phys. Fluids, 2, 1318–1324.Search in Google Scholar

9. Batani, D., Bossi, S., Benuzzi, A., Koenig, M., Faral, B., Boudenne, J. M., Grandjouan, N., Atzeni, S., & Temporalet, M. (1996). Optical smoothing for shock-wave generation: application to the measurement of equations of state. Laser Part. Beams, 14(2), 211–223.Search in Google Scholar

10. Montgomery, D. S., Moody, J. D., Baldis, H. A., Afeyan, B. B., Berger, R. L., Estabrook, K. G., Lasinski, B. F., Williams, E. A., & Labaune, C. (1996). Effects of laser beam smoothing on stimulated Raman scattering in exploding foil plasmas. Phys. Plasmas, 3(5), 1728. http://dx.doi.org/10.1063/1.871682.Search in Google Scholar

11. Labaune, C., Baldis, H. A., Schifano, E., Bauer, B. S., Maximov, A., Ourdev, I., Rozmus, W., & Pesme, D. (2000). Enhanced forward scattering in the case of two crossed laser beams interacting with a plasma. Phys. Rev. Lett., 85(8), 1658.Search in Google Scholar

12. Emery, M. H., Gardner, J. H., Lehmberg, R. H., & Obenschain, S. P. (1991). Hydrodynamic target response to an induced spatial incoherence-smoothed laser beam. Phys. Fluids B, 3, 2640–2650.Search in Google Scholar

13. Desselberger, M., Afshar-rad, T., Khattak, F., Viana, S., & Willi, O. (1992) Nonuniformity imprint on the ablation surface of laser-irradiated targets. Phys. Rev. Lett., 68(10), 1539.Search in Google Scholar

14. Batani, D., Balducci, A., Nazarov, W., Löwer, Th., Hall, T., Koenig, M., Faral, B., Benuzzi, A., & Temporal, M. (2001). Use of low-density foams as pressure amplifiers in equation-of-state experiments with laser-driven shock waves. Phys. Rev. E, 63(4), 046410.Search in Google Scholar

15. Batani, D., Nazarov, W., Hall, T., Löwer, Th., Koenig, M., Faral, B., Benuzzi-Mounaix, A., & Grandjouan, N. (2000). Foam smoothing studied through laser produced shocks. Phys. Rev. E, 62(6), 8573–8582.Search in Google Scholar

16. Benocci, R., Batani, D., Dezulian, R., Redaelli, R., Lucchini, G., Canova, F., Stabile, H., Faure, J., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Koenig, M., Tikhonchuk, V., Nicolaï, Ph., & Malka, V. (2009). Direct evidence of gas-induced laser beam smoothing in the interaction, with thin foils. Phys. Plasmas, 16(1), 012703. http://dx.doi.org/10.1063/1.3056396.Search in Google Scholar

17. Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P., & Ullschmied, J. (2001). The Prague Asterix Laser System. Phys. Plasmas, 8, 2495. http://dx.doi.org/10.1063/1.1350569.Search in Google Scholar

18. Zel’dovich, Ya. B., & Raizer, Yu. P. (2002). Physics of shock waves and high-temperature hydrodynamical phenomena. Dover, New York.Search in Google Scholar

19. Lindl, J. (1995). Development of indirect-drive approach to inertial confinement fusion and target physics basis for ignition and gain. Phys. Plasmas, 2, 3933–4024.Search in Google Scholar

20. Ramis, R., Meyer-ter-Vehn, J., & Ramírez, J. (2009). MULTI2D – a computer code for two-dimensional radiation hydrodynamics. Comput. Phys. Commun., 180, 977–994.Search in Google Scholar

21. Aliverdiev, A., Batani, D., Dezulian, R., Vinci, T., Benuzzi-Mounaix, A., Koenig, M., & Malka, V. (2008). Hydrodynamics of laser-produced plasma corona by optical interferometry. Plasma Phys. Control. Fusion, 50, 105013.Search in Google Scholar

22. Aliverdiev, A., Batani, D., Antonelli, L., Jakubowska, K., Dezulian, R., Amirova, A., Gajiev, G., Khan, M., & Pant, H. C. (2014). Use of multilayer targets for achieving off-Hugoniot states. Phys. Rev. E, 89, 053101.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo