1. bookVolume 60 (2015): Issue 2 (June 2015)
Journal Details
License
Format
Journal
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Electromagnetic pulses produced by expanding laser-produced Au plasma

Journal Details
License
Format
Journal
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English

The interaction of an intense laser pulse with a solid target produces large number of fast free electrons. This emission gives rise to two distinct sources of the electromagnetic pulse (EMP): the pulsed return current through the holder of the target and the outflow of electrons into the vacuum. A relation between the characteristics of laser-produced plasma, the target return current and the EMP emission are presented in the case of a massive Au target irradiated with the intensity of up to 3 × 1016 W/cm2. The emission of the EMP was recorded using a 12 cm diameter Moebius loop antennas, and the target return current was measured using a new type of inductive target probe (T-probe). The simultaneous use of the inductive target probe and the Moebius loop antenna represents a new useful way of diagnosing the laser–matter interaction, which was employed to distinguish between laser-generated ion sources driven by low and high contrast laser pulses.

Keywords

1. Dubois, J. -L., Lubrano-Lavaderci, F., Raffestin, D., Ribolzi, J., Gazave, J., Compant La Fontaine, A., d’Humières, E., Hulin, S., Nicolaï, Ph., Poyé, A., & Tikhonchuk, V. T. (2014). Target charging in short-pulse-laser–plasma experiments. Phys. Rev. E, 89, 013102. DOI: 10.1103/PhysRevE.89.013102.Search in Google Scholar

2. Benjamin, R. F., McCall, G. H., & Ehler, A. W. (1979). Measurement of return current in a laser-produced plasma. Phys. Rev. Lett., 42, 890–893. DOI: 10.1103/PhysRevLett.42.890.Search in Google Scholar

3. Mead, M. J., Neely, D., Gauoin, J., Heathcote, R., & Patel, P. (2004). Electromagnetic pulse generation within a petawatt laser target chamber. Rev. Sci. Instrum., 75, 4225–4227. http://dx.doi.org/10.1063/1.1787606.Search in Google Scholar

4. Stoeckl, C., Glebov, V. Yu., Jaanimagi, P. A., Knauer, J. P., Meyerhofer, D. D., Sangster, T. C., Storm, M., Sublett, S., Theobald, W., Key, M. H., MacKinnon, A. J., Patel, P., Neely, D., & Norreys, P. A. (2006). Operation of target diagnostics in a petawatt laser environment. Rev. Sci. Instrum., 77, 10F506. http://dx.doi.org/10.1063/1.2217922.Search in Google Scholar

5. Brown, C. G. Jr, Ayers, J., Felker, B., Ferguson, W., Holder, J. P., Nagel, S. R., Piston, K. W., Simanovskaia, N., Throop, A. L., Chung, M., & Hilsabeck, T. (2012). Assessment and mitigation of diagnostic-generated electromagnetic interference at the National Ignition Facility. Rev. Sci. Instrum., 83, 10D729. http://dx.doi.org/10.1063/1.4739313.Search in Google Scholar

6. Eder, D. C., Throop, A., Brown, C. G. Jr, Kimbrough, J., Stowell, M. L., White, D. A., Song, P., Back, N., MacPhee, A., Chen, H., DeHope, W., Ping, Y., Maddox, B., Lister, J., Pratt, G., Ma, T., Tsui, Y., Perkins, M., O’Brien, D., & Patel, P. (2009). Mitigation of electromagnetic pulse (EMP) effects from short-pulse lasers and fusion neutrons. LDRD Final Report. (LLNL-TR-411183). DOI: 10.2172/950076.Search in Google Scholar

7. Picciotto, A., Margarone, D., Velyhan, A., Bellutti, P., Krasa, J., Szydlowsky, A., Bertuccio, G., Shi, Y., Mangione, A., Prokupek, J., Malinowska, A., Krousky, E., Ullschmied, J., Laska, L., Kucharik, M., & Korn, G. (2014). Boron-proton nuclear-fusion enhancement induced in boron-doped silicon targets by low-contrast pulsed laser. Phys. Rev. X, 4, 031030. DOI: 10.1103/PhysRevX.4.031030.Search in Google Scholar

8. Cikhardt, J., Krása, J., De Marco, M., Pfeifer, M., Velyhan, A., Krouský, E., Cikhardtová, B., Klír, D., Řezáč, K., Ullschmied, J., Skála, J., Kubeš, P., & Kravárik, J. (2014). Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS. Rev. Sci. Instrum., 85, 103507. DOI: 10.1063/1.4898016.Search in Google Scholar

9. Krasa, J., Parys, P., Velardi, L., Velyhan, A., Ryc, L., Delle Side, D., & Nassisi, V. (2014). Time-of-flight spectra for mapping of charge density of ions produced by laser. Laser Part. Beams, 32, 15–20. DOI: 10.1017/S0263034613000797.Search in Google Scholar

10. Fuchs, J., Audebert, P., Borghesi, M., Pépin, H., & Willi, O. (2009). Laser acceleration of low emittance, high energy ions and applications. Comptes Rendus Phys., 10, 176–187. DOI: 10.1016/j.crhy.2009.03.011.Search in Google Scholar

11. Láska, L., Krása, J., Velyhan, A., Jungwirth, K., Krouský, E., Margarone, D., Pfeifer, M., Rohlena, K., Ryć, L., Skála, J., Torrisi, L., & Ullschmied, J. (2009). Experimental studies of generation of ~100 MeV Au-ions from the laser-produced plasma. Laser Part. Beams, 27, 137–147. DOI: 10.1017/S0263034609000202.Search in Google Scholar

12. Krása, J., Velyhan, A., Margarone, D., Krouský, E., Láska, L., Jungwirth, K., Rohlena, K., Ullschmied, J., Parys, P., Ryć, L., & Wołowski, J. (2012). Shot-to-shot reproducibility in the emission of fast highly charged metal ions from a laser ion source. Rev. Sci. Instrum., 83, 02B302. http://dx.doi.org/10.1063/1.3655528.Search in Google Scholar

13. Láska, L., Jungwirth, K., Krása, J., Krouský, E., Pfeifer, M., Rohlena, K., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Gammino, S., Torrisi, L., & Boody, F. P. (2006). Self-focusing in processes of laser generation of highly-charged and high-energy heavy ions. Laser Part. Beams, 24, 175–179. DOI: 10.10170S0263034606060253.Search in Google Scholar

14. Láska, L., Badziak, J., Gammino, S., Jungwirth, K., Kasperczuk, A., Krása, J., Krouský, E., Kubeš, P., Parys, P., Pfeifer, M., Pisarczyk, T., Rohlena, K., Rosinski, M., Ryć, L., Skála, J., Torrisi, L., Ullschmied, J., Velyhan, A., & Wolowski, J. (2007). The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams. Laser Part. Beams, 25, 549–556. DOI: 10.1017/S0263034607000651.Search in Google Scholar

15. Torrisi, L., Margarone, D., Laska, L., Krasa, J., Velyhan, A., Pfeifer, M., Ullschmied, J., & Ryc, L. (2008). Self-focusing effect in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams, 26, 379–387. DOI: 10.1017/S0263034608000396.Search in Google Scholar

16. Krása, J., Velyhan, A., Jungwirth, K., Krouský, E., Láska, L., Rohlena, K., Pfeifer, M., & Ullschmied, J. (2009). Repetitive outbursts of fast carbon and fluorine ions from sub-nanosecond laser-produced plasma. Laser Part. Beams, 27, 171–178. DOI: 10.1017/S0263034609000238.Search in Google Scholar

17. Krása, J., Klír, D., Velyhan, A., Margarone, D., Krouský, E., Jungwirth, K., Skála, J., Pfeifer, M., Kravárik, J., Kubeš, P., Řezáč, K., & Ullschmied, J. (2013). Observation of repetitive bursts in emission of fast ions and neutrons in sub-nanosecond laser-solid experiments. Laser Part. Beams, 31, 395–401.Search in Google Scholar

18. Krása, J., Klír, D., Velyhan, A., Krouský, E., Pfeifer, M., Řezáč, K., Cikhardt, J., Turek, K., Ullschmied, J., & Jungwirth, K. (2014). Generation of high energy neutrons with 300-ps laser system PALS. High Power Laser Sci. Eng., 2, e19. DOI:10.1017/hpl.2014.25.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo