1. bookVolume 60 (2015): Issue 4 (December 2015)
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

A calculation model for liquid-liquid extraction of protactinium by 2,6-dimethyl-4-heptanol

Published Online: 30 Dec 2015
Volume & Issue: Volume 60 (2015) - Issue 4 (December 2015)
Page range: 837 - 845
Received: 01 Jul 2015
Accepted: 26 Sep 2015
Journal Details
License
Format
Journal
eISSN
1508-5791
First Published
25 Mar 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Reprocessing of spent nuclear fuel usually employs the solvent extraction technique to recover fissile material, isolate other valuable radionuclides, recover precious metals, and remove contaminants. Efficient recovery of these species from highly radioactive solutions requires a detailed understanding of reaction conditions and metal speciation that leads to their isolation in pure forms. Due to the complex nature of these systems, identification of ideal reaction conditions for the efficient extraction of specific metals can be challenging. Thus, the development of experimental approaches that have the potential to reduce the number of experiments required to identify ideal conditions are desirable. In this study, a full-factorial experimental design was used to identify the main effects and variable interactions of three chemical parameters on the extraction of protactinium (Pa). Specifically we investigated the main effects of the anion concentration (NO3-, Cl-) extractant concentration, and solution acidity on the overall extraction of protactinium by 2,6-dimethyl-4-heptanol (diisobutylcarbinol; DIBC) from both HCl and HNO3 solutions. Our results indicate that in HCl, the extraction of protactinium was dominated by the solution acidity, while in nitric acid the extraction was strongly effected by the [DIBC]. Based on our results, a mathematical model was derived, that describes the relationship between concentrations of anions, extractant, and solution acidity and the expected values of Pa distribution coefficients in both HCl and HNO3. This study demonstrates the potential to predict the distribution coefficient values, based upon a mathematical model generated by a full-factorial experimental design.

Keywords

1. King, J.C. (1987). The impact of separation science and technology on some key technological challenges facing society. In R. Price (Ed.), Separation and purification: Critical needs and opportunities. Washington, D. C., USA: National Academy Press.Search in Google Scholar

2. Nuclear Energy Agency with Working Party on Nuclear Criticality Safety and Expert Group on Assay Data of Spent Nuclar Fuel. (2011). Spent nuclear fuel assay data for isotopic validation. Organisation for Economic Co-operation and Development. NEA.Search in Google Scholar

3. International Atomic Energy Agency. (2007). Use of reprocessed uranium. In Technical Committee Meeting. Vienna, Austria: IAEA. (IAEA-TECDOC-CD-1630).Search in Google Scholar

4. Simpson, M. F., & Law, J. D. (2010). Nuclear fuel reprocessing. Idaho Falls, Idaho: Idaho National Laboratory. (INL/EXT-10-17753).10.2172/974763Search in Google Scholar

5. Kirby, H. W. (1959). The radiochemistry of protactinium. National Academy of Sciences National Research Council. (Nuclear Series, NAS-NS 3016).Search in Google Scholar

6. Rydberg, J., Musikas, C., Choppin, G. R., & Cox, M. (2004). Solvent extraction principles, and practices. 2nd ed. New York: Marcel Dekker.Search in Google Scholar

7. Multi-Agency Radiological Laboratory Analytical Protocols Manual. (2004). 14.4 Solvent Extraction. (NUREG-1576), (EPA 402-B-04-001A), (NTIS PB2004-105421).Search in Google Scholar

8. U. S. Department of Energy. (2011). Nuclear separations technologies workshop report: Getting from where we are to where we want to be in nuclear separations technologies. Bethesda, Maryland.Search in Google Scholar

9. Kumari, N., Pathak, P. N., Prabhu, D. R., & Manchanda, V. K. (2012). Solvent extraction studies of protactinium for its recovery from short-cooled spent fuel and high-level waste solutions in thorium fuel cycle using diisobutyl carbinol (DIBC) as extractant. Desalin. Water Treat., 38(1/3), 46-51. DOI: 10.5004/ DWT.2012.2292.Search in Google Scholar

10. Rampolla, D. S. (1982). U. S. Patent No. 4,344,912A. Method of increasing the deterrent to proliferation of nuclear fuels. U. S. Department of Energy.Search in Google Scholar

11. National Nuclear Data Center. (2015). Infomation extracted from the NuDat 2 database. http://www.nndc.bnl.gov/nudat2.Search in Google Scholar

12. Eppich, G. R., William, R. W., Gaffney, A. M., & Schorzman, K. C. (2013). U-235-Pa-231 age dating of uranium materials for nuclear forensic investigations. J. Anal. At. Spectrom., 28(5), 666-674. DOI: 10.1039/C3ja50041a.10.1039/c3ja50041aSearch in Google Scholar

13. Trianti, N., Su’ud, Z., & Riyana, E. S. (2012). Design study of thorium-232 and protactinium-231 based fuel for long life BWR. In 3rd International Conference on Advances in Nuclear Science and Engineering. (1448, pp. 96-100).10.1063/1.4725442Search in Google Scholar

14. Imamura, T., Saito, M., Yoshida, T., & Artisyuk, V. (2004). Production of Pa-U fuel with proliferation resistance by 14 MeV neutron for long-life core. J. Nucl. Sci. Technol., 40(6), 655-664.10.1080/18811248.2004.9715530Search in Google Scholar

15. Tsvetkov, P. V., Kryuchkov, E. F., Shmelev, A. N., Apse, V. A., Kulikov, G. G., Masterov, S. V., Kulikov, E. G., & Glebov, V. B. (2011). Isotopic uranium and plutonium denaturing as an effective method for nuclear fuel proliferation protection in open and closed fuel cycles. In P. Tsvetkov (Ed.), Nuclear power - deployment, operation and sustainability (Chapter 14). Winchester, UK: InTech.Search in Google Scholar

16. Myasoedov, B. F., Kirby, H. W., & Tananaev, I. G. (2010). Protactinium. In L. R. Morss, N. M. Edelstein, & J. Fuger (Eds.), The chemistry of the actinide and transactinide elements. Vol. 1. Dordrecht, Netherlands: Springer.Search in Google Scholar

17. Berry, J. A., Hobley, J., Lane, S. A., Littleboy, A. K., Nash, M. J., Oliver, P., Smith-Briggs, J. L., & Williams, S. J. (1989). Solubility and sorption of protactinium in near-field and far-field environments of a radioactive waste repository. Analyst, 114, 339-347.10.1039/an9891400339Search in Google Scholar

18. Forbes, T. Z., Burns, P. C., Soderholm, L., & Skanthakumar, S. (2007). Hydrothermal synthesis and structure of neptunium(V) oxide. In D. Dunn, C. Poinssot, & B. Begg (Eds.), Scientific basis for nuclear waste management XXX, (Vol. 985, pp. 401-406). Cambridge, UK: Cambridge University Press.Search in Google Scholar

19. De Sio, S. M., & Wilson, R. E. (2014). Structural and spectroscopic studies of fluoroprotactinates. Inorg. Chem., 53(3), 1750-1755.10.1021/ic402877aSearch in Google Scholar

20. Eskandari Nasab, M. (2014). Solvent extraction separation of uranium(VI) and thorium(IV) with neutral organophosphorus and amine ligands. Fuel, 116, 595-600.10.1016/j.fuel.2013.08.043Search in Google Scholar

21. Knight, A. W., Nelson, A. W., Eitrheim, E. S., Forbes, T. Z., & Schultz, M. K. (2015). A chromatographic separation of neptunium and protactinium using 1-octanol impregnated onto a solid phase support. J. Radioanal. Nucl. Chem. DOI: 10.1007/s10967-015-4124-3.10.1007/s10967-015-4124-3Search in Google Scholar

22. Hill, C. (2010). Overview of recent advances in An(III)/Ln(III) separation by solvent extraction. In B. Moyer (Ed.), Ion exchange and solvent extraction. (A Series of Advances, Vol. 19, pp. 119-193). Boca Raton: CRC Press.Search in Google Scholar

23. Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters: An introduction to design analysis and model building. New York: John Wiley and Sons.Search in Google Scholar

24. Schultz, M. K., Inn, K. G. W., Lin, Z. C., Burnett, W. C., Smith, G., Biegalski, S. R., & Filliben, J. (1998). Identification of radionuclide partitioning in soils and sediments: Determination of optimum conditions for the exchangeable fraction of the NIST standard sequential extraction protocol. Appl. Radiat. Isot., 49(9/11), 1289-1293.10.1016/S0969-8043(97)10062-8Search in Google Scholar

25. Currie, L. A. (1968). Limits for qualitative detection and quantitative determination. Anal. Chem., 40(3), 586-593.10.1021/ac60259a007Search in Google Scholar

26. Burnett, W. C., & Yeh, C. C. (1995). Separation of protactinium from geochemical materials via extraction chromatography. Radioact. Radiochem., 6(4), 22-32.Search in Google Scholar

27. Regelous, M., Turner, S. P., Elliot, T. R., Rostami, K., & Hawkesworth, C. J. (2004) Measurement of femtogram quantities of protactinium in silicate rock samples by multicollector inductively coupled plasma mass spectrometry. Anal. Chem., 76(13), 3584-3589.10.1021/ac030374lSearch in Google Scholar

28. Knight, A. W., Eitrheim, E. S., Nelson, A. W., Nelson, S., & Schultz, M. K. (2014). A simple-rapid method to separate uranium, thorium, and protactinium for U-series age-dating of materials. J. Environ. Radioact., 134, 66-74.10.1016/j.jenvrad.2014.02.010Search in Google Scholar

29. Silva, A., Delerue-Matos, C., & Fiuza, A. (2005). Use of solvent extraction to remediate soils contaminated with hydrocarbons. J. Hazard. Mater., 124(1/3), 224-229.10.1016/j.jhazmat.2005.05.022Search in Google Scholar

30. Scherff, H. -L., & Herrmann, G. (1966). Ionic species of pentavalent protactinium in hydrochloric acid solutions. Radiochim. Acta, 6(2), 53-61.10.1524/ract.1966.6.2.53Search in Google Scholar

31. Casey, A. T., & Maddock, A. G. (1959). The chemistry of protactinium - some spectrophotometric observations. J. Inorg. Nucl. Chem., 10(1/2), 58-68.10.1016/0022-1902(59)80186-XSearch in Google Scholar

32. Guillaumont, R., Muxart, R., Bouissieres, G., & Haissinsky, M. (1960). Spectres Dabsorption Du Protactinium En Solution Aqueuse. J. Chim. Phys. Phys.-Chim. Biol., 57(11/12), 1019-1028.10.1051/jcp/1960571019Search in Google Scholar

33. Hardy, C. J., Scargill, D., & Fletcher, J. M. (1958). Studies on protactinium(V) in nitric acid solutions. J. Inorg. Nucl. Chem., 7(3), 257-275.10.1016/0022-1902(58)80077-9Search in Google Scholar

34. Spitsyn, V. I., & Dyachkov, R. A. (1964). Concentrating 231Pa from uranium production waste. J. Nucl. Energy AB, 18(12PA), 731.10.1016/0368-3230(64)90128-4Search in Google Scholar

35. Hochberg, Y., & Tamhane, A. C. (1987). Multiple comparison procedures. New York: Wiley.10.1002/9780470316672Search in Google Scholar

36. Spitsyn, V. I., Dyachkov, R. A., & Khlebnikov, V. P. (1964). State of protactinium in nitrate solutions. Dokl. Akad. Nauk SSSR, 157(1), 135-138.Search in Google Scholar

37. Theil, H. (1971). Principles of econometrics. New York: John Wiley & Sons.Search in Google Scholar

38. Theil, H. (1961). Economic forecasts and policy. 2nd ed. Amsterdam: North-Holland Publ. Co.Search in Google Scholar

39. Anderson, M. J., & Whitcomb, P. J. (2007). DOE Simplified: Practical tools for effective experimentation. New York: Productivity.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo