1. bookVolume 44 (2015): Issue 2 (June 2015)
Journal Details
First Published
23 Feb 2007
Publication timeframe
access type Open Access

The effect of irradiance on the xanthophyll composition of Skeletonema marinoi (Bacillariophycae), Teleaulax sp., Rhodomonas sp. (Cryptophyceae), and Heterocapsa triquetra (Dinophyceae)

Published Online: 05 Jun 2015
Page range: 172 - 180
Received: 31 Oct 2014
Accepted: 22 Jan 2015
Journal Details
First Published
23 Feb 2007
Publication timeframe

The aim of the research was to determine the effect of irradiance on the content of carotenoids in the natural algae community occurring in the Baltic Sea: diatom Skeletonema marinoi, cryptophytes Teleaulax sp., Rhodomonas sp., and dinoflagellate Heterocapsa triquetra.

In the natural population of Skeletonema marinoi, the highest fucoxanthin content was observed in the morning and afternoon, unlike with diatoxanthin+diadinoxanthin, where a mean of 0.008 pg cell-1 was found at dawn and at dusk, whereas maximum values were observed at noon (mean 0.017 pg cell-1). Similar tendencies related to diurnal variations in the content of xanthophylls involved in the xanthophyll cycle occurred also in dinoflagellate Heterocapsa triquetra.

In cryptophytes Teleaulax sp. and Rhodomonas sp., no carotenoids of the xanthophyll cycle were detected. The content of alloxanthin showed diurnal variation from 0.048 pg cell-1 to 0.085 pg cell-1 and was not clearly correlated with the irradiance.


Anning, T., MacIntyre H.L., Pratt S.M., Sammes P.J., Gibb S.& Geider R.J. (2000). Photoacclimation in the marine diatom Skeletonema costatum. Limnol. Oceanogr. 45(8): 1807-1817. DOI: 10.4319/lo.2000.45.8.1807. Search in Google Scholar

Barlow, R.G., Aiken J., Holligan P.M., Cummings D.G., Maritorena S. & Hooker S. (2002). Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean. Deep-Sea Res.I 47: 637-660. DOI: 10.1016/S0967-0637(01)00081-4. Search in Google Scholar

Bertrand, M., Schoefs B., Siffel P., Rohacek K.& Molnar I. (2001). Cadmium inhibits epoxidation of diatoxanthin in the xanthophylls cycle of the marine diatom Phaeodactylum tricornutum. FEBS Letters 508(1): 153-156. DOI: 10.1016/ S0014-5793(01)03050-2. Search in Google Scholar

Bonilla, S., Rautio M. &Vincent W.F. (2009). Phytoplankton and phytobenthos pigment strategies: implications for algal survival in the changing Arctic. Polar Biol. 32(9): 1293-1303. DOI: 10.1007/s00300-009-0626-1. Search in Google Scholar

Bungard, R.A., Ruban A.V., Hibberd J.M., Press M.C., Horton P.& Scholes J.D. (1999). Unusual carotenoid composition and new type of xanthophyll cycle in plants. Proc. Natl. Acad. Sci. USA, Plant Biology 96: 1135-1139. DOI: 10.1073/ pnas.96.3.1135. Search in Google Scholar

Cogdell, R.J., Howard T.D., Bittl R., Schlodder E., Geisenheimer I. & Lubitz W. (2000). How carotenoids protect bacterial photosynthesis. Phil. Trans. Soc. Lond. B 355(1402): 1345-1449. DOI: 10.1098/rstb.2000.0696. Search in Google Scholar

Demming-Adams, B. (1990). Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta 1020(1): 1-24. DOI: 10.1016/0005-2728(90)90088-L. Search in Google Scholar

Demming-Adams, B. & Adams W.W. III (1993). The xanthophyll cycle. In: A. Young & G. Britton (Eds.), Carotenoids in Photosynthesis (pp. 206-251). London: Chapman & Hall. Search in Google Scholar

Demming-Adams, B., Adams W.W. III (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1(1): 21-26. DOI: 10.1016/S1360-1385(96) 80019-7. Search in Google Scholar

Demming-Adams, B., Adams W.W. III, Ebbert V. & Logan B.A. (1999). Ecophysiology and the xanthophyll cycle. In H.A Frank, A.J. Young, G. Britton, R.J. Cogdell (Eds.), Advances in Photosynthesis, The photochemistry of carotenoids. Vol. 8 (pp. 245-269). Dordrecht: Kluwer Academic Publishers. Search in Google Scholar

Demmig-Adams, B., Gilmore A.M. & Adams W.W. III (1996). Carotenoids 3: In vivo function of carotenoids in higher plants. FASEB J. 10(4): 403-412. Search in Google Scholar

Demming, B., Winter K., Krűger A. & Czygan F-C. (1987). Photoinhibition and zeaxanthin formation in intact leaves: a possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol. 84(2): 218-224. DOI: org/ 10. 1104/ pp. 84. 2. 218. Search in Google Scholar

Frank, H. A. & Cogdell R.J. (1996). Carotenoids in photosythesis, Invited Review. Photochem. Photobiol. 63(3): 257-264. DOI: 10.1111/j.1751-1097.1996.tb03022.x. Search in Google Scholar

Frank, H.A., Cua A., Chynwat V., Young A., Gosztola D. & Wasilewski M.R. (1994). Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth. Res. 41(3): 389-395. DOI: 10.1007/BF02183041. Search in Google Scholar

Funk, C., Alami M., Tibiletti T. & Green B.R. (2011). High light stress and the one-helix LHC-like proteins of the cryptophyte Guillardia theta. Biochim. Biophys. Acta 1807(7): 841-846. DOI: 10.1016/j.bbabio.2011.03.011. Search in Google Scholar

Gilmore, A.M. & Yamamoto H.Y. (1993). Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin - independent quenching. Photosynth. Res. 35(1): 67-78. DOI: 10.1007/BF02185412. Search in Google Scholar

Goericke, R. & Welschmeyer N.A. (1992). Pigment turnover in the marine diatom Thalassiosira weissflogii. II: The 14CO2 - labeling kinetics of carotenoids. J. Phycol. 28(4): 507-517. DOI: 10.1111/j.0022-3646.1992.00507.x. Search in Google Scholar

Goss, R., & Jakob T. (2010). Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth. Res. 106(1-2): 103-122. DOI: 10.1007/s11120-010-9536-x. Search in Google Scholar

HELCOM (2001) Manual for marine monitoring in the COMBINE programme of HELCOM. Part C. Programme for monitoring of eutrophication and its effects, Annex C-6: Phytoplankton species composition, abundance and biovolume, Baltic Marine Environment Protection Commission, Helsinki. [http://www.helcom.fi/groups/monas/CombineManual/AnnexesC/enGB/annex6/]. Search in Google Scholar

Henriksen, P., Riemann, B., Kaas, H., Sorensen, H. M., Sorensen, H. L. (2002). Effects of Nutrient-limitation and irradiance on marine phytoplankton pigments. J. Plankton Res. 24(9): 835-858. DOI: 10.1093/plankt/24.9.835 Search in Google Scholar

Kaňa, R., Kotabová E., Sobotka R. & Prášil O. (2012). Nonphotochemical quenching in Cryptophyte alga Rhodomonas salina is located in chlorophyll a/c antennae. PLoS ONE 7(1): e29700. DOI: 10.1371/journal.pone.0029700. Search in Google Scholar

Latasa, M. (1995). Pigment composition of Heterocapsa sp. and Thalassiosira weissflogii growing in batch cultures under different irradiances. Sci. Mar. 59(1): 25-37. Search in Google Scholar

Lohr, M. & Wilhelm C. (1999). Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc. Natl. Acad. Sci. USA, Plant Biology 96(15): 8784-8789. DOI: 10.1073/pnas.96.15.8784. Search in Google Scholar

Mantoura, R.F.C. & Llewellyn C.A. (1983). The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reversephase high-performance liquid chromatography. Anal. Chim. Acta 151: 297-314. DOI: 10.1016/s0003-2670(00)80092-6. Search in Google Scholar

Menden-Deuer, S. & Lessard E.J. (2000). Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton, Limnol. Oceanogr. 45(1): 569-579. DOI: 10.4319/ lo.2000.45.3.0569. Search in Google Scholar

Mohanty, Y. N. & Yamamoto H.Y. (1995). Mechanism of nonphotochemical chlorophyll fluorescence quenching. I. The role of de-epoxidised xanthophylls and sequestered thylakoid membrane protons as probed by dibucaine. Aust. J. Plant Physiol. 22(2): 231-238. DOI:10.1071/PP9950231. Search in Google Scholar

Niyogi, K.K., Björkman O. & Grossman A.R. (1997): The roles of specific xanthophylls in photoprotection. Proc. Search in Google Scholar

Natl. Acad. Sci. USA 94(25),:14162-14167. DOI: 10.1073/ pnas.94.25.14162 Search in Google Scholar

Owens T.G. (1996). Processing of excitation energy by antenna pigments. In N.R. Baker (Eds.), Advances in Photosynthesis and Respiration Series. Photosynthesis and the Environment, Vol. 5 (pp.1-23). Dordrecht: Kluwer Academic Publishers. DOI: 10.1007/0-306-48135-9_1. Search in Google Scholar

Porra, R.J., Pfündel E.E. & Engel N. (1997). Metabolism and function of photosynthetic pigments. In: S.W Jeffrey., R.F.C. Search in Google Scholar

Mantoura & S.W. Wright (Eds). Phytoplankton pigments in oceanography (pp. 85-126). Paris: UNESCO Publishing. Search in Google Scholar

Pfűndel, E. & Bilger W. (1994). Regulation and possible function of the violaxanthin cycle. Photosynth. Res. 42(2): 89-109. DOI: 10.1007/BF02187121. Search in Google Scholar

Roy, S., Llewellyn C.A., Egeland E.S. & Johnsen, G. (Eds) (2011). Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography. (890 pp.). New York: Cambridge Environmental Chemistry Series, Cambridge University Press. Search in Google Scholar

Sarno, D., Kooistra W.H.C.F., Medlin L.K., Percopo I. & Zingone A. (2005). Diversity in the genus Skeletonema (Bacillariophyceae). II An assessment of the taxonomy of S. costatum-like species with the description of four new species. J. Phycol. 41(1): 151-176. DOI: 10.1111/j.1529-8817.2005.04067.x Search in Google Scholar

Schlüter, L., Mohlenberg, F., Havskum, H. & Larsen, S. (2000). The use of phytoplankton pigments for identifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios. Mar. Ecol. Prog. Ser. 192: 49-63. DOI:10.3354/meps192049 Search in Google Scholar

Skoda, B. (1997). Contributions to the biochemical taxonomy of the genus Chlorella Beijerinck s.1. - pigment composition. 2. Biochemotaxonomical differences in pigment composition of the strains growing under nitrogen deficient nutritional conditions. Arch. Hydrobiol. Suppl. (Algol. Stud.) 122: 109-136. Search in Google Scholar

Stoń, J. & Kosakowska A.(2000). Qualitative and quantitative analysis of Baltic phytoplankton pigments. Oceanologia 42(4): 449-471. Search in Google Scholar

Stoń, J. & Kosakowska A. (2002). Phytoplankton pigment designation - an application of RP-HPLC in qualitative and quantitative analysis. J. Appl. Phycol. 14(3): 205-210. DOI:10.1023/A:1019928411436 Search in Google Scholar

Stoń-Egiert, J., Majchrowski R., Darecki M., Kosakowska A. & Ostrowska M. (2012). Influence of underwater light fields on pigment characteristics in the Baltic Sea - results of statistical analysis. Oceanologia 54(1): 7-27. DOI: 10.5697/oc.54-1.007. Search in Google Scholar

Straub, O., 1987. Key to carotenoids. H. Pfander, M. Gerspacher, M. Rychener & R. Schwabe (Eds), (296 pp.), Basel, Boston: Birkhäuser Verlag. Search in Google Scholar

Takaichi, S. (2011). Carotenoids in algae: distribution, biosyntheses and functions. Mar. Drugs 9(6): 1101-1118. DOI: 10.3390/md9061101. Search in Google Scholar

Utermöhl, H. (1958). Zur Vervollkommnung der qualitativen Phytoplankton Methodik. Mitt. int. Ver. theor. angew. Limnol. 9: 1-38. Search in Google Scholar

Yamamoto, H.Y. (1979). Biochemistry of the violaxanthin cycle in higher plants. Pure Appl. Chem. 51(3): 639-648. DOI: 10.1351/pac197951030639. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo