1. bookVolume 17 (2015): Issue 1 (March 2015)
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Removal of chlorophenols from aqueous solutions by sorption onto walnut, pistachio and hazelnut shells

Published Online: 25 Mar 2015
Page range: 23 - 31
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English

The efficiency of walnut, pistachio and hazelnut shells to remove three monochlorophenols (2-CP, 3-CP and 4-CP) from aqueous solutions has been investigated. To describe the kinetic data pseudo-first and pseudo-second order models were used. The kinetics data were fitted better into the pseudo-second order model with the coefficient of determination values greater than 0.99. The k2 values increased in the order 4-CP < 3-CP < 2-CP. Sorption was also analyzed as a function of solution concentration at equilibrium. The experimental data received were found to be well described by the Freundlich isotherm equation. Effectiveness of chlorophenols removal from water on the walnut, pistachio and hazelnut shells was comparable. Individual differences in sorption of monochlorophenols were also negligible.

Keywords

1. Czaplicka, M. (2004). Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ. 322, 21-39. DOI: 10.1016/j.scitotenv.2003.09.015.Search in Google Scholar

2. Armenante, P.M., Kafkewitz, D., Lewandowski, G.A. & Jou, C.J. (1999). Anaerobic-aerobic treatment of halogenated phenolic compounds. Water Res. 33(3), 681-692. DOI: 10.1016/ S0043-1354(98)00255-3.Search in Google Scholar

3. Ahlborg, U.G., Thunberg, T.M. & Spencer, H.C. (1980). Chlorinated phenols: Occurrence, toxicity, metabolism, and environmental impact Crit. Rev. Toxicol. 7, 1-35.Search in Google Scholar

4. EC Decision 2455/2001/EC of the European Parliament and the Council of November 20, 2001 establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC.Search in Google Scholar

5. Bhatt, P., Kumar, M.S., Mudliar, S. & Chakrabarti, T. (2007). Biodegradation of chlorinated compounds - A review. Crit. Rev. Environ. Sci. Technol. 37, 165-198. DOI: 10.1080/10643380600776130.Search in Google Scholar

6. Olaniran, A.O. & Igbinosa, E.O. (2011). Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere 83, 1297-1306. DOI: 10.1016/j.chemosphere.2011.04.009.Search in Google Scholar

7. Pera-Titus, M., Garcia-Molina, V., Banos, M., Jimenez, J. & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal. B-Environ. 47, 219-256. DOI: 10.1016/j.apcatb.2003.09.010.Search in Google Scholar

8. Kucharska, M. & Naumczyk, J. (2009). Degradation of selected chlorophenols by advanced oxidation processes. J. Environ. Prot. Eng. 35, 47-55.Search in Google Scholar

9. Munoz, M., de Pedro, Z.M., Casas, J.A. & Rodriguez, J.J. (2011). Assessment of the generation of chlorinated byproducts upon Fenton-like oxidation of chlorophenols at different conditions. J. Hazard. Mater. 190, 993-1000. DOI: 10.1016/j. jhazmat.2011.04.038.Search in Google Scholar

10. Kuśmierek, K. & Świątkowski, A. (2012). Removal of 4-chlorophenol from water by advanced oxidation processes based on hydrogen peroxide. Przem. Chem. 91(12), 2422-2424. [In polish].Search in Google Scholar

11. Jung, M.W., Ahn, K.H., Lee, Y., Kim, K.P., Rhee, J.S., Park, J.T. & Paeng, K.J. (2001). Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC). Microchem. J. 70, 123-131. DOI: 10.1016/S0026-265X(01)00109-6.Search in Google Scholar

12. Hamdaoui, O. & Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part II. Models with more than two parameters. J. Hazard. Mater. 147, 401-411. DOI: 10.1016/j. jhazmat.2007.01.023.Search in Google Scholar

13. Wu, F.C., Tseng, R.L., Huang, S.C. & Juang, R.S. (2009). Characteristics of pseudo-second-order kinetic model for liquid- phase adsorption: A mini-review. Chem. Eng. J. 151, 1-9. DOI: 10.1016/j.cej.2009.02.024.Search in Google Scholar

14. Kuśmierek, K., Sankowska, M. & Świątkowski, A. (2014). Kinetic and equilibrium studies of simultaneous adsorption of monochlorophenols and chlorophenoxy herbicides on activated carbon, Desalin. Water Treat. 52, 178-183. DOI: 10.1080/19443994.2013.780984.Search in Google Scholar

15. Biniak, S., Świątkowski, A., Pakuła, M., Sankowska, M., Kuśmierek, K., & Trykowski, G. (2013). Cyclic voltammetric and FTIR studies of powdered carbon electrodes in the electrosorption of 4-chlorophenols from aqueous electrolytes. Carbon 51, 301-312. DOI: http://dx.doi.org/10.1016/j.carbon.2012.08.057.Search in Google Scholar

16. Aksu, Z. & Yener. J. (1998). Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge. Proc. Biochem. 33(6), 649-655. DOI: 10.1016/S0032-9592(98)00029-6.Search in Google Scholar

17. Aksu, Z. & Yener, J. (2001). A comparative adsorption/ biosorption study of mono-chlorinated phenols onto various sorbents. Waste Manage. 21, 695-702. DOI: 10.1016/S0956- -053X(01)00006-X.Search in Google Scholar

18. Lin, S.H. & Juang, R.S. (2009). Adsorption of phenol and its derivatives from water using synthetic resins and low- -cost natural adsorbents: A review. J. Environ. Manage. 90, 1336-1349. DOI: 10.1016/j.jenvman.2008.09.003.Search in Google Scholar

19. Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Proc. Biochem. 40, 997-1026. DOI: 10.1016/j.procbio.2004.04.008.Search in Google Scholar

20. Ahmaruzzaman, M. (2008). Adsorption of phenolic compounds on low-cost adsorbents: A review. Adv. Colloid Interf. Sci. 143, 48-67. DOI: 10.1016/j.cis.2008.07.002Search in Google Scholar

21. Park, D., Yun, Y.S. & Park, J.M. (2010). The past, present, and future trends of biosorption. Biotechnol. Bioproc. Eng. 15, 86-102. DOI/10.1007/s12257-009-0199-4.Search in Google Scholar

22. Kumar, N.S., Subbaiah, M.V., Reddy, A.S. & Krishnaiah, A. (2009). Biosorption of phenolic compounds from aqueous solutions onto chitosan-abrus precatorius blended beads. J. Chem. Technol. Biotechnol. 84, 972-981. DOI: 10.1002/jctb.2120.Search in Google Scholar

23. Kumar, N.S. & Min, K. (2011). Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling. Chem. Eng. J. 168, 562-571. DOI: 10.1016/j.cej.2011.01.023.Search in Google Scholar

24. Radhika, M. & Palanivelu, K. (2006). Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent- Kinetics and isotherm analysis. J. Hazard. Mater. B138, 116-124. DOI: 10.1016/j.jhazmat.2006.05.045.Search in Google Scholar

25. Kurniawan, T.A., Waihung, L., Repo, E. & Sillanpaa, M.E.T. (2010). Removal of 4-chlorophenol from contaminated water using coconut shell waste pretreated with chemical agents. J. Chem. Technol. Biotechnol. 85, 1616-1627. DOI: 10.1002/ jctb.2473.Search in Google Scholar

26. Kazmi, M., Saleemi, A.R., Feroze, N., Yaqoob, A. & Ahmad, S.W. (2013) Removal of phenol from wastewater using activated waste tea leaves. Pol. J. Chem. Tech. 15(2), 1-6. DOI: 10.2478/pjct-2013-0016.Search in Google Scholar

27. Kuśmierek, K., Dąbek, L., Kamiński, W. & Świątkowski, A. (2013). Evaluation of the usefulness of peat for removal of chlorophenols from water solutions. Ochr. Srod. 35(2), 51-55. [In polish].Search in Google Scholar

28. Ferrero, F. (2007). Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust. J. Hazard. Mater. 142, 144-152. DOI: 10.1016/j.jhazmat.2006.07.072.Search in Google Scholar

29. Dogan, M., Abak, H. & Alkan, M. (2008). Biosorption of methylene blue from aqueous solutions by hazelnut shells: equilibrium, parameters and isotherms. Water Air Soil Pollut. 192, 141-153. DOI: 10.1007/s11270-008-9641-z.Search in Google Scholar

30. Altun, T. & Pehlivan, E. (2007). Removal of copper(II) ions from aqueous solutions by walnut-, hazelnut- and almond- -shells. Clean 35(6), 601-606. DOI: 10.1002/clen.200700046.Search in Google Scholar

31. Altun, T. & Pehlivan, E. (2008). Biosorption of chromium( VI) ion from aqueous solutions using walnut, hazelnut and almond shell. J. Hazard. Mater. 155, 378-384. DOI: 10.1016/j. jhazmat.2007.11.071.Search in Google Scholar

32. Teixeira, S., Delerue-Matos, C. & Santos, L. (2012). Removal of sulfamethoxazole from solution by raw and chemically treated walnut shells. Environ. Sci. Pollut. Res. 19, 3096-3106. DOI: 10.1007/s11356-012-0853-9.Search in Google Scholar

33. Gala, A. & Sanak-Rydlewska, S. (2012). A comparision of Pb2+ sorption from aqueous solutions on walnut shells and plum stones. Pol. J. Environ. Stud. 20(4), 877-883.Search in Google Scholar

34. Gala, A. & Sanak-Rydlewska, S. (2012). Use of walnut shells for removing Cd2+ ions from aqueous solutions. Przem. Chem. 91(4), 531-536. [In polish].Search in Google Scholar

35. Ferro-Garcia, M.A., Rivera-Utrilla, J., Bautista-Toledo, I. & Moreno-Castilla, C. (1998). Adsorption of humic substances on activated carbon from aqueous solutions and their effect on the removal of Cr(III) ions. Langmuir 14, 1880-1886.Search in Google Scholar

36. Moreno-Castilla, C. (2004). Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon 42, 83-94. DOI: 10.1016/j.carbon.2003.09.022.Search in Google Scholar

37. Lagergren, S. (1898). Theorie der sogenannten adsorption geloester stoffe, Vetenskapsakad. Handl. 24, 1-39.Search in Google Scholar

38. Ho, Y.S. & McKay, G. (1999). Pseudo-second-order model for sorption processes. Process. Biochem. 34, 451-465. DOI: 10.1016/S0032-9592(98)00112-5.Search in Google Scholar

39. Weber Jr., W. & Morris, J. (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. ASCE 18, 31-42.Search in Google Scholar

40. Hameed, B.H. (2009). Spent tea leaves: A new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J. Hazard. Mater. 161, 753-759. DOI: 10.1016/j.jhazmat.2008.04.019.Search in Google Scholar

41. Lorenc-Grabowska, E. Gryglewicz, G. & Diez, M.A. (2013). Kinetics and equilibrium study of phenol adsorption on nitrogen- enriched activated carbons. Fuel 114, 235-243. DOI: http:// dx.doi.org/10.1016/j.fuel.2012.11.056.Search in Google Scholar

42. Giles, C.H., MacEwan, T.H., Nakhwa, S.N. & Smith, D. (1960). Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 60, 3973-3393.Search in Google Scholar

43. Freundlich, H.M.F. (1906). Über die adsorption in lösungen. Z. Phys. Chem. 57, 385-470.Search in Google Scholar

44. Akcay, M. & Akcay, G. (2004). The removal of phenolic compounds from aqueous solutions by organophilic bentonite. J. Hazard. Mater. B113, 189-193. DOI: 10.1016/j. jhazmat.2004.06.026.Search in Google Scholar

45. Monsalvo, V.M., Mohedano, A.F. & Rodriguez, J.J. (2012). Adsorption of 4-chlorophenol by inexpensive sewage sludge- -based adsorbents. Chem. Eng. Res. Des. 90, 1807-1814. DOI: http://dx.doi.org/10.1016/j.cherd.2012.03.018.Search in Google Scholar

46. An, F., Du, R., Wang, X., Wan, M., Dai, X. & Gao, J. (2012). Adsorption of phenolic compounds from aqueous solution using salicylic acid type adsorbent. J. Hazard. Mater. 201-202, 74-81. DOI: 10.1016/j.jhazmat.2011.11.037.Search in Google Scholar

47. Liu, Q.-S., Zheng, T., Wang, P., Jiang, J.P. & Li, N. (2010). Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 157, 348-356. DOI: 10.1016/j.cej.2009.11.013. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo