1. bookVolume 17 (2015): Issue 1 (March 2015)
Journal Details
License
Format
Journal
eISSN
1899-4741
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Biosorption of lead(II), zinc(II) and nickel(II) from industrial wastewater by Stenotrophomonas maltophilia and Bacillus subtilis

Published Online: 25 Mar 2015
Volume & Issue: Volume 17 (2015) - Issue 1 (March 2015)
Page range: 79 - 87
Journal Details
License
Format
Journal
eISSN
1899-4741
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
Abstract

The biosorption of Pb(II), Zn(II) and Ni(II) from industrial wastewater using Stenotrophomonas maltophilia and Bacillus subtilis was investigated under various experimental conditions regarding pH, metal concentration and contact time. The optimum pH values for the biosorption of the three metals were in the range 5.0-6.0, while the optimal contact time for the two bacterial species was 30 min. Experimental data was analyzed using Langmuir and Freundlich isotherms; the former had a better fit for the biosorption of Pb(II), Zn(II) and Ni(II). The maximum adsorption uptakes (qmax) of the three metals calculated from the Langmuir biosorption equation for S. maltophilia were 133.3, 47.8 and 54.3 for Pb(II), Zn(II) and Ni(II), respectively, and for B. subtilis were 166.7, 49.7 and 57.8 mg/g, respectively. B. subtilis biomass was more favorable for the biosorption of Pb (II) and Ni (II), while S. maltophilia was more useful for the biosorption of Zn (II).

Keywords

1. Lesmana, S.O., Febriana, N., Soetaredjo, F.E., Sunarso, J. & Ismadji, S. (2009). Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem. Eng. J. 44, 19-41. DOI: 10.1016/j.bej.2008.12.009.10.1016/j.bej.2008.12.009Search in Google Scholar

2. Nourbakhsh, M.N., Kiliçarslam, S., Ilhan, S. & Ozdag, H. (2002). Biosorption of Cr6+, Pb2+ and Cu2+ ions In industrial waste water on Bacillus sp. Chem. Eng. J. 85, 351-355. DOI: 10.1016/S1385-8947(01)00227-3.10.1016/S1385-8947(01)00227-3Search in Google Scholar

3. Choi, A., Wang, S. & Lee, M. (2009). Biosorption of cadmium, copper, and lead ions from aqueous solution by Ralstonia sp. and Bacillus sp. isolated from diesel and heavy metal contaminated soil. Geosci. J. 13(4), 331-341. DOI: 10.1007/s12303-009-0031-3.10.1007/s12303-009-0031-3Search in Google Scholar

4. Bahadir, T., Bakan, G., Altas, L. & Buyukgungor, H. (2007). The investigation of lead removal by biosorption: An application AT storage battery industry wastewaters. Enzyme. Microb. Tech. 41, 98-102. DOI: 10.1016/j.enzmictec.2006.12.007.10.1016/j.enzmictec.2006.12.007Search in Google Scholar

5. Sassi, M., Bestani, B., Said, A.H., Benderdouche, N. & Guibal, E. (2010). Removal of heavy metal ions from aqueous solutions by a local dairy sludge as a biosorbant. Desalination. 262, 243-250. DOI: 10.1016/j.desal.2010.06.022.10.1016/j.desal.2010.06.022Search in Google Scholar

6. Muñoz, A.J., Ruiz, E., Abriouel, H., Gálvez, A., Ezzouhri, L., Lairini, K. & Espinola, F. (2012). Heavy metal tolerance of microorganisms isolated from wastewaters: Identification and evaluation of its potential for biosorption. Chem. Eng. J. 210, 325-332. DOI: 10.1016/J.cej.2012.09.007.10.1016/j.cej.2012.09.007Search in Google Scholar

7. Rodriguez-Tirado, V., Green-Ruiz, C. & Gómez-Gil, B. (2012). Cu and Pb biosorption on Bacillus thioparans strain U3 in aqueous solution: Kinetic and equilibrium studies. Chem. Eng. J. 181-182, 352-359. DOI: 10.1016/j.cej.2011.11.091.10.1016/j.cej.2011.11.091Search in Google Scholar

8. Ahluwalia, S.S. & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technol. 98, 2243-2257. DOI: 10.1016/j. biortech.2005.12.006.Search in Google Scholar

9. Shroff, K.A. & Vaidya, V.K. (2011). Kinetic and equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis. Chem. Eng. J. 171, 1234-1245. DOI: 10.1016/j/cej.2011.05.034.Search in Google Scholar

10. Pahlavanzadeh, H., Keshtkar, A.R., Sfadari, J. & Abadi, Z. (2010). Biosorption of nikel(II) from aqueous solution by Brown algae: Equilibrium, dynamic and thermodynamic studies. J. Hazard. Mater. 175, 304-310. DOI: 10.1016/j/jhazmat.2009.10.004.Search in Google Scholar

11. Kratochvil, D. & Volesky, B. (1998). Advances in the biosorption of heavy metals. Trends Biotechmol. 16, 291-300. DOI: 10.1016/S0167-7799(98)01218-9.10.1016/S0167-7799(98)01218-9Search in Google Scholar

12. Vijayaraghavan, K. & Yun, Y.S. (2008). Bacterial biosorbents and biosorption. Biotechnol. Adv. 26, 266-291. DOI: 10.1016/j.biotechadv.2008.02.002.10.1016/j.biotechadv.2008.02.002Search in Google Scholar

13. Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M. & Thamaraiselvi, K. (2007). Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard. Mater. 146, 270-277. DOI: 10.1016/j.hazmat.2006.12.017.Search in Google Scholar

14. Vegli, F., Beolchini, F. (1997). Removal of metals by biosorption: a review. Hydrometallurgy 44, 301-316. DOI: 10.1016/ S0304-386X(96)00059-X.10.1016/S0304-386X(96)00059-XSearch in Google Scholar

15. Gabr, R.M., Hassan, S.H.A. & Shoreit, A.A.M. (2008). Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int. Biodeter. Biodegr. 62, 195-203. DOI: 10.1016/j.ibiod.2008.01.008.10.1016/j.ibiod.2008.01.008Search in Google Scholar

16. Chen, C.X., Wang, P.Y., Lin, Q., Shi, Y.J., Wu, W.X. & Chen, Y.X. (2005). Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloid. Surface. B. 46, 101-107. DOI: 10.1016/j.colsurfb.2005.10.00.Search in Google Scholar

17. Joo, J.H., Hassan, S.H.A., Oh, S.E. (2010). Comparative study of biosorption of Zn2+ by Pseudomonas aeruginosa and Bacillus cereus. Int. Biodeter. Biodegr. 64, 734-741. DOI: 10.1016/j.biod.2010.08.007.Search in Google Scholar

18. Sneath, P.H.A., Mair, N.S., Sharpe, M.E. & Holt, J.G. (1986). Bergey’s Manual of Systematic Bacteriology Vol. 2. Williams & Wilkins, Baltimore. ISBN 978-0-387-95040-2.Search in Google Scholar

19. Ji, Y., Gao, H., Sun, J. & Cai, F. (2011). Experimental probation on the binding kinetics and termodynamics of AU(III) onto Bacillus subtilis. Chem. Engine. J., 172, 122-128. DOI: 10.1016/j.cej.2011.05.077.10.1016/j.cej.2011.05.077Search in Google Scholar

20. Nawaz, M.S., Franklin, W. & Cerniglia, C.E. (1993). Degradation of acrylamide by immobilized cells of a Pseudomonas sp. And Xanthomonas maltophilia. Can. J. Microbiol. 39(2), 207-212. DOI: 10.1111/j.1574-6968.2010.02085.x.10.1111/j.1574-6968.2010.02085.xSearch in Google Scholar

21. Ji, Y., Gao, H., Sun, J. & Cai, F. (2011). Experimental probation on the binding kinetics and thermodynamics of Au(III) onto Bacillus subtilis. Chem. Eng. J. 172, 122-128. DOI: 10.1016/j.cej.2011.05.077.10.1016/j.cej.2011.05.077Search in Google Scholar

22. Liu, Y., Cao, Q., Luo, F. & Chen, J. (2009). Biosorption of Cd2+, Cu2+, Ni2+, and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. J. Hazard. Mater. 163, 931-938. DOI: 10.1016/j.hazmat.2008.07.046.Search in Google Scholar

23. Wang, J. & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotech. Adv. 27, 195-226. DOI: 10.1016/j.biotechadv.2008.11.002.10.1016/j.biotechadv.2008.11.002Search in Google Scholar

24. Lopez, A., Lazaro, N., Priego, J.M. & Marques, A.M. (2000). Effect of pH on the biosorption of nickel and other heavy metals by Pseudomonas fluorescens 4F39. J. Ind. Microbiol. Biot. 24, 146-151. DOI: 10.1038/sj.jim.2900793.10.1038/sj.jim.2900793Search in Google Scholar

25. Fosso-Kankeu, E., Mulaba-Bafubiandi, A.F., Mamba, B.B., Marjanovic, L. & Barnard, T.G. (2010). A comprehensive study of physical and physiological parameters that affect biosorption of metal pollutants from aqueous solutions. Phys. Chem. Earth. 35, 672-678. DOI: 10.1016/j.pce.2010.07.008.10.1016/j.pce.2010.07.008Search in Google Scholar

26. Veglió, F., Beolchini, F. & Gasbarro, A. (1997). Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp. Process Biochem. 32, 99-105. DOI: 10.1016/ S0032-9592(96)00047-7.10.1016/S0032-9592(96)00047-7Search in Google Scholar

27. Çabuk, A., Akar, T., Tunali, S. & Tabak, O. (2006). Biosorption characteristic of Bacillus sp. ATS-2 immobilized in silica gel for removal of Pb(II). J. Hazard. Mater. 136, 317-323. DOI: 10.1016/j.hazmat.2005.12.019.Search in Google Scholar

28. Ho, Y.S. (2005). Effect of pH on lead removal from water using tree fern as the sorbent. Bioresource Technol. 96, 1292-1296. DOI: 10.1016/j.biotech.2004.10.011.Search in Google Scholar

29. Çolak, F., Atar, N., Yazicioğlu, D. & Olgun, A. (2011). Biosorption of lead from aqueous solution by Bacillus strains possessing heavy-metal resistance. Chem. Eng. J. 173, 422-428. DOI: 10.1016/j.cej.2011.07.084.10.1016/j.cej.2011.07.084Search in Google Scholar

30. Li, H., Lin, Y., Guan, W., Jiali, Ch., Xu, L., Gou, J. & Wei, G. (2010). Biosorption of Zn(II) by live and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72-14. J. Hazard. Mater. 179, 151-159. DOI: 10.1016/j.hazmat.2010.02.072.Search in Google Scholar

31. Aston, J.E., Apel, W.A., Lee, B.D. & Peyton, B.M. (2010). Effects of cell condition, pH and temperature on lead, zinc and copper sorption to Acidithiobacillus caldus strain BC13. J. Hazard. Mater. 184, 34-41. DOI: 10.1016/j.hazmat.2010.07.110.Search in Google Scholar

32. Lopez, A., Lazaro, N., Morales, S. & Marques, A.M. (2002). Nickel biosorption by free and immobilized cells of Pseudomonas fluorescens 4F39: a comparative study. Wat. Air Soil Poll. 135, 157-172. DOI: 10.1023/A:1014706827124.10.1023/A:1014706827124Search in Google Scholar

33. Hawari, A.H. & Mulligan, C.N. (2006). Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresource Technol. 97, 692-700. DOI: 10.1016/j.biortech.2005.03.033.10.1016/j.biortech.2005.03.03315935654Search in Google Scholar

34. Zaidi, S. & Musarrat, J. (2004). Characterization and nickel sorption kinetics of a new metal hyper-accumulator Bacillus sp. J. Environ. Sci. Heal. A. 39(3), 681-691. DOI: 10.1081/ ESE-120027734.10.1081/ESE-12002773415055934Search in Google Scholar

35. Green-Riuz, C., Rodriguez-Tirado, V. & Gomez-Gil, B. (2008). Cadmium and zinc removal from aqueus solution by Bacillus jeotgali: pH, salinity and temperature effects. Bioresource Technol. 99, 3864-3870. DOI: 10.1016/j.biortech.2007.06.047.10.1016/j.biortech.2007.06.04717697774Search in Google Scholar

36. Wierzba, S. & Latała, A. (2010). Biosorption lead(II) and nickel(II) from an aqueous solution by bacterial biomass. Pol. J. Chem. Technol. 12(3), 72-78. DOI: 10.2478/v10026-010-0038-6.10.2478/v10026-010-0038-6Search in Google Scholar

37. Bueno, B.Y.M., Torem, M.L., Carvalho, R.J., Pino, G.A.H. & Mesquita, L.M.S. (2011). Fundamental aspects of biosorption of lead (II) ions onto a Rhodococcus oparus strain for environmental applications. Miner. Eng. 24, 1619-1624. DOI: 10.1016/j.mineng.2011.08.018.10.1016/j.mineng.2011.08.018Search in Google Scholar

38. Shinde, N.R., Bankar, A.V., Kumar, A.R. & Zinjarde, S.S. (2012). Removal of Ni(II) ions from aqueous solutions by biosorption onto two strains of Yarrowia lipolytica. J. Environ. Manage. 102, 115-124. DOI: 10.1016/j.envman.2012.02.026 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo