1. bookVolume 2015 (2015): Issue 1 (April 2015)
Journal Details
License
Format
Journal
First Published
16 Apr 2015
Publication timeframe
4 times per year
Languages
English
Copyright
© 2020 Sciendo

Automated Experiments on Ad Privacy Settings

Published Online: 18 Apr 2015
Page range: 92 - 112
Received: 22 Nov 2014
Accepted: 18 Feb 2015
Journal Details
License
Format
Journal
First Published
16 Apr 2015
Publication timeframe
4 times per year
Languages
English
Copyright
© 2020 Sciendo
Abstract

To partly address people’s concerns over web tracking, Google has created the Ad Settings webpage to provide information about and some choice over the profiles Google creates on users. We present AdFisher, an automated tool that explores how user behaviors, Google’s ads, and Ad Settings interact. AdFisher can run browser-based experiments and analyze data using machine learning and significance tests. Our tool uses a rigorous experimental design and statistical analysis to ensure the statistical soundness of our results. We use AdFisher to find that the Ad Settings was opaque about some features of a user’s profile, that it does provide some choice on ads, and that these choices can lead to seemingly discriminatory ads. In particular, we found that visiting webpages associated with substance abuse changed the ads shown but not the settings page. We also found that setting the gender to female resulted in getting fewer instances of an ad related to high paying jobs than setting it to male. We cannot determine who caused these findings due to our limited visibility into the ad ecosystem, which includes Google, advertisers, websites, and users. Nevertheless, these results can form the starting point for deeper investigations by either the companies themselves or by regulatory bodies.

Keywords

[1] J. R. Mayer and J. C. Mitchell, “Third-party web tracking: Policy and technology,” in IEEE Symposium on Security and Privacy, 2012, pp. 413-427.Search in Google Scholar

[2] B. Ur, P. G. Leon, L. F. Cranor, R. Shay, and Y. Wang, “Smart, useful, scary, creepy: Perceptions of online behavioral advertising,” in Proceedings of the Eighth Symposium on Usable Privacy and Security. ACM, 2012, pp. 4:1-4:15.Search in Google Scholar

[3] Google, “About ads settings,” https://support.google.com/ ads/answer/2662856, accessed Nov. 21, 2014.Search in Google Scholar

[4] Yahoo!, “Ad interest manager,” https://info.yahoo.com/ privacy/us/yahoo/opt_out/targeting/details.html, accessed Nov. 21, 2014.Search in Google Scholar

[5] Microsoft, “Microsoft personalized ad preferences,” http: //choice.microsoft.com/en-us/opt-out, accessed Nov. 21, 2014.Search in Google Scholar

[6] Executive Office of the President, “Big data: Seizing opportunities, preserving values,” Posted at http://www. whitehouse.gov/sites/default/files/docs/big_data_privacy_ report_may_1_2014.pdf, 2014, accessed Jan. 26, 2014.Search in Google Scholar

[7] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork, “Learning fair representations,” in Proceedings of the 30th International Conference on Machine Learning (ICML-13), S. Dasgupta and D. Mcallester, Eds., vol. 28. JMLR Workshop and Conference Proceedings, May 2013, pp. 325-333. [Online]. Available: http: //jmlr.org/proceedings/papers/v28/zemel13.pdfSearch in Google Scholar

[8] Google, “Privacy policy,” https://www.google.com/intl/en/ policies/privacy/, accessed Nov. 21, 2014.Search in Google Scholar

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.Search in Google Scholar

[10] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific tools for Python,” 2001, http://www.scipy.org/.Search in Google Scholar

[11] M. C. Tschantz, A. Datta, A. Datta, and J. M. Wing, “A methodology for information flow experiments,” ArXiv, Tech. Rep. arXiv:1405.2376v1, 2014.Search in Google Scholar

[12] P. Good, Permutation, Parametric and Bootstrap Tests of Hypotheses. Springer, 2005.Search in Google Scholar

[13] C. E. Wills and C. Tatar, “Understanding what they do with what they know,” in Proceedings of the 2012 ACM Workshop on Privacy in the Electronic Society, 2012, pp. 13-18.Search in Google Scholar

[14] P. Barford, I. Canadi, D. Krushevskaja, Q. Ma, and S. Muthukrishnan, “Adscape: Harvesting and analyzing online display ads,” in Proceedings of the 23rd International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2014, pp. 597-608.Search in Google Scholar

[15] B. Liu, A. Sheth, U. Weinsberg, J. Chandrashekar, and R. Govindan, “AdReveal: Improving transparency into online targeted advertising,” in Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks. ACM, 2013, pp. 12:1-12:7.Search in Google Scholar

[16] M. Lécuyer, G. Ducoffe, F. Lan, A. Papancea, T. Petsios, R. Spahn, A. Chaintreau, and R. Geambasu, “XRay: Increasing the web’s transparency with differential correlation,” in Proceedings of the USENIX Security Symposium, 2014.Search in Google Scholar

[17] S. Englehardt, C. Eubank, P. Zimmerman, D. Reisman, and A. Narayanan, “Web privacy measurement: Scientific principles, engineering platform, and new results,” Manuscript posted at http://randomwalker.info/ publications/WebPrivacyMeasurement.pdf, 2014, accessed Nov. 22, 2014.Search in Google Scholar

[18] S. Guha, B. Cheng, and P. Francis, “Challenges in measuring online advertising systems,” in Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, 2010, pp. 81-87.Search in Google Scholar

[19] R. Balebako, P. Leon, R. Shay, B. Ur, Y. Wang, and L. Cranor, “Measuring the effectiveness of privacy tools for limiting behavioral advertising,” in Web 2.0 Security and Privacy Workshop, 2012.Search in Google Scholar

[20] L. Sweeney, “Discrimination in online ad delivery,” Commun. ACM, vol. 56, no. 5, pp. 44-54, 2013.Search in Google Scholar

[21] R. A. Fisher, The Design of Experiments. Oliver & Boyd, 1935.Search in Google Scholar

[22] S. Greenland and J. M. Robins, “Identifiability, exchangeability, and epidemiological confounding,” International Journal of Epidemiology, vol. 15, no. 3, pp. 413-419, 1986.Search in Google Scholar

[23] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.Search in Google Scholar

[24] D. D. Jensen, “Induction with randomization testing: Decision-oriented analysis of large data sets,” Ph.D. dissertation, Sever Institute of Washington University, 1992.Search in Google Scholar

[25] Alexa, “Is popularity in the top sites by category directory based on traffic rank?” https://support.alexa.com/hc/enus/ articles/200461970, accessed Nov. 21, 2014.Search in Google Scholar

[26] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.Search in Google Scholar

[27] S. Holm, “A simple sequentially rejective multiple test procedure,” Scandinavian Journal of Statistics, vol. 6, no. 2, pp. 65-70, 1979.Search in Google Scholar

[28] Google, “Google privacy and terms,” http://www.google. com/policies/technologies/ads/, accessed Nov. 22, 2014.Search in Google Scholar

[29] H. Abdi, “Bonferroni and Šidák corrections for multiple comparisons,” in Encyclopedia of Measurement and Statistics, N. J. Salkind, Ed. Sage, 2007.Search in Google Scholar

[30] D. Hume, A Treatise of Human Nature: Being an Attempt to Introduce the Experimental Method of Reasoning into Moral Subjects, 1738, book III, part I, section I.Search in Google Scholar

[31] Pew Research Center’s Social and Demographic Trends Project, “On pay gap, millennial women near parity - for now: Despite gains, many see roadblocks ahead,” 2013.Search in Google Scholar

[32] T. Z. Zarsky, “Understanding discrimination in the scored society,” Washington Law Review, vol. 89, pp. 1375-1412, 2014.Search in Google Scholar

[33] R. S. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork, “Learning fair representations,” in Proceedings of the 30th International Conference on Machine Learning, ser. JMLR: W&CP, vol. 28. JMLR.org, 2013, pp. 325-333.Search in Google Scholar

[34] Adgooroo, “Adwords cost per click rises 26% between 2012 and 2014,” http://www.adgooroo.com/resources/blog/ adwords-cost-per-click-rises-26-between-2012-and-2014/, accessed Nov. 21, 2014.Search in Google Scholar

[35] L. Olejnik, T. Minh-Dung, and C. Castelluccia, “Selling off privacy at auction,” in Network and Distributed System Security Symposium (NDSS). The Internet Society, 2013.Search in Google Scholar

[36] C. J. Clopper and E. S. Pearson, “The use of confidence or fiducial limits illustrated in the case of the binomial,” Biometrika, vol. 26, no. 4, pp. 404-413, 1934. Search in Google Scholar

Plan your remote conference with Sciendo