1. bookVolume 17 (2016): Issue 1 (March 2016)
Journal Details
License
Format
Journal
First Published
20 Mar 2000
Publication timeframe
4 times per year
Languages
English
access type Open Access

Groupage Cargo Transportation Model

Published Online: 22 Feb 2016
Page range: 60 - 72
Journal Details
License
Format
Journal
First Published
20 Mar 2000
Publication timeframe
4 times per year
Languages
English

In this work we consider a specific problem of optimal planning of maritime transportation of multiproduct cargo by ships of one (corporate strategy) or several (partially corporate strategy) companies: the core of the problem consists of the existence of the network of intermediate seaports (i.e. transitional seaports), where for every ship arrived the cargo handling is done, and which are situated between the starting and the finishing seaports. In this work, there are mathematical models built from scratch in the form of multicriteria optimization problem; then the goal attainment method of Gembicki is used for reducing the built models to a one-criterion problem of linear programming.

Keywords

1. Coello Coello, C.A., and Lamont, G.B. (2004) Applications of Multi-Objective Evolutionary Algorithms. Vol. 1: Advances in Natural Computation. New Jersey-London-Singapore-Berlin-Shanghai-Hong Kong-Taipei-Chennai: World Scientific, xxvii+761 p.Search in Google Scholar

2. Courant, R. (1989) Partial Differential Equations. New York-London: Wiley VCH, xxii+830 p.Search in Google Scholar

3. Davenport, H. (2008) The Higher Arithmetic: An Introduction to the Theory of Numbers. Cambridge, UK: Cambridge University Press, ix+239.Search in Google Scholar

4. Deb, K. (2001) Multi-objective Optimization Using Evolutionary Algorithms. Chichester-New York-Weinheim-Brisbane-Singapore-Toronto: John Wiley & Sons, xix+497 p.Search in Google Scholar

5. Gembicki, F.W. (1973) Vector Optimization for Control with Performance and Parameter Sensitivity Indices. Ph.D. Thesis, Department of System Engineering, Case Western Reserve University, Cleveland, USA, 204 p.Search in Google Scholar

6. Gembicki, F.W., and Haimes, Y.Y. (1975) Approach to Performance and Sensitivity Multiobjective Optimization: The Goal Attainment Method. IEEE Transactions on Automatic Control, 29(6), pp. 769-771.Search in Google Scholar

7. Goncharsky, A.V., Leonov, A.S., and Yagola, A.G. (1973) A generalized residual principle. Computational Mathematics and Mathematical Physics, 13(2), pp. 294-302.Search in Google Scholar

8. Kang, M.H., Choi, H.R., Kim, H.S., and Park, B.J. (2012) Development of a maritime transportation planning support system for car carriers based on genetic algorithm. Applied Intelligence, 36(3), pp. 585-604.Search in Google Scholar

9. Liotta, G., Stecca, G., and Kaihara, T. (2015) Optimisation of freight flows and sourcing in sustainable production and transportation networks. International Journal of Production Economics, 164, pp. 351-365.Search in Google Scholar

10. Masane-Ose, J. (2014) Competitive position of the Baltic States Ports. Riga, Latvia: KPMG International Cooperative. (Transport & Logistics, pp. 1-12; https://www.kpmg.lv)Search in Google Scholar

11. Medvedeva, A.A. (2014) Opportunities to reduce aggregate expenditures by means of creating a strategic alliance by maritime cargo transportation. M.Sc. Thesis in Transport and Logistics. Riga, Latvia: Transport and Telecommunication Institute, Faculty of Transport and Logistics, 62 p.Search in Google Scholar

12. Nikolaeva, L.L., and Tsymbal, N.N. (2005) Maritime Transportation. Odessa, Ukraine: FENIX Press, 424 p.Search in Google Scholar

13. Song, D.-W., and Panayides, Ph.M. (2012) Maritime Logistics: A Complete Guide to Effective Shipping and Port Management. London-Philadelphia-New Delhi: Kogan Page, 344 p.Search in Google Scholar

14. Steuer, R.E. (1986) Multiple Criteria Optimization: Theory, Computation, and Application. New York, USA: John Wiley & Sons, xx+546 p.Search in Google Scholar

15. Swiss Re Economic Research & Consulting. (2001-2015) World Insurance Reports No 6/2001; No 6/2002; No 8/2003; No 3/2004; No 2/2005; No 5/2006; No 4/2007; No 3/2008; No 3/2009; No 2/2010; No 2/2011; No 3/2012; No 3/2013; No 3/2014; No 4/2015. Zurich, Switzerland: Swiss Re, sigma. http://www.swissre.com/sigma/Search in Google Scholar

16. Tikhonov, A.N. (1966) Ill-posed optimal planning problems. Journal of Computational Mathematics and Mathematical Physics, 6(1), pp. 81-89.Search in Google Scholar

17. Tikhonov, A.N., Karmanov, V.G., and Rudneva, T.L. (1969) On the stability of linear programming problems. In: Numerical Methods and Programming, XII. Moscow: Lomonosov Moscow State University Press, pp. 3-9.Search in Google Scholar

18. Tikhonov, A.N., and Arsenin, V.Y. (1977) Solutions of Ill-Posed Problems. New York, USA: Halsted Press, xiii+258 p.Search in Google Scholar

19. Tuy, H., Chinchuluun, A., Pardalos, P.M., Migdalas, A., and Pitsoulis, L. (2008) Pareto Optimality, Game Theory and Equilibria. New York: Springer, 871 p.Search in Google Scholar

20. Wakeman, Th., and Bomba, M. (2010) Maritime Freight Transportation, National Economic Recovery, and Global Sustainability: Coordinating a Strategic Plan. Transportation Research Board of the National Academies of Sciences, Engineering, Medicine. TR News: Globalization and Transportation, 269, pp. 14-20.Search in Google Scholar

21. Weil, A. (2013) Basic Number Theory. Berlin-Heidelberg: Springer-Verlag, xviii+316 p.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo