1. bookVolume 27 (2019): Issue 2 (December 2019)
Journal Details
First Published
08 Aug 2013
Publication timeframe
2 times per year
access type Open Access

Stimuli Responsive Hydrogels: NIPAM/AAm/Carboxylic Acid Polymers

Published Online: 26 Dec 2019
Page range: 155 - 184
Journal Details
First Published
08 Aug 2013
Publication timeframe
2 times per year

Stimuli-responsive hydrogels (SRH) were prepared by using monomers (i.e. N-isopropyl acrylamide; NIPAM and acrylamide; AAm), co-monomers (i.e. methacrylic acid; MPA or mesaconic acid; MFA) and a crosslinker (N, N’-methylene bisacrylamide; N-Bis). SRH have been prepared by thermal free radical polymerization reaction in aqueous solution. Spectroscopic and thermal analyses such as Fourier Transform Infrared Spectroscopy, thermogravimetric analysis and differential scanning calorimetry analysis were performed for SRH characterization. The equilibrium swelling studies by gravimetrically were carried out in different solvents, at the solutions, temperature, pH, and ionic strengths to determine their effect on swelling characteristic of the hydrogels. In addition, cycles equilibrium swelling studies were made with the solutions at different temperatures and at different pH. NIPAM/AAm hydrogel exhibits a lover critical solution temperature (LCST) at 28 oC, whereas NIPAM/AAm-MPA and NIPAM/AAm-MFA hydrogels exhibit a LCST at 31 C and 35 oC, respectively, and the LCST of NIPAM/AAm-MFA hydrogel is close to the body temperature.


1. Devi, L.; Gaba, P. Hydrogel: An updated primer. J. Crit. Rev.,2019, 6(4), 1-10.Search in Google Scholar

2. Buwalda, S. J.; Boere, K. W. M.; Dijkstra, P. J.; Feijen, J.; Vermonden, T.; Hennink, W. E. Hydrogels in a historical perspective: From simple networks to smart materials. J. Cont. Rel.2014, 190, 254-273.Search in Google Scholar

3. Gyles, D. A.; Castro, L. D.; Carréra Silva Jr, J. O.; Ribeiro-Costa, R. M. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulation. Eur. Polym. J. 2017, 88, 373–392.Search in Google Scholar

4. Enas. M. A. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res.2015, 6, 105–121.Search in Google Scholar

5. Singhal, R.; Gupta, K. A Review: Tailor-made hydrogel structures (classifications and synthesis parameters), Polym.-Plast. Technol. Eng.2016, 55(1), 54-70.Search in Google Scholar

6. Parhi, R. Cross-linked hydrogel for pharmaceutical applications: A review, Adv. Pharma. Bull.2017, 7(4), 515-530.Search in Google Scholar

7. Elsayed, M. M. Hydrogel preparation technologies: Relevance kinetics, thermodynamics and scaling up aspects. J. Polym. Env.2019, 27, 871-891.Search in Google Scholar

8. Luo, H.; Wu, K.; Wang, Q.; Zhang, T. C.; Lu, H.; Rong, H.; Fang, Q. Forward osmosis with electro-responsive P(AMPS-co-AM) hydrogels as draw agents for desalination, J. Memb. Sci.2020, 593, 117406.Search in Google Scholar

9. Liu, R.; Fraylich, M.; Saunders, B.R. Thermoresponsive copolymers: from fundamental studies to applications. Coll. Polym. Sci.2009, 287, 627-643.Search in Google Scholar

10. Sponchioni, M.; Palmiero, U.C.; Moscatelli, D. Thermo-responsive polymers: Applications of smart materials in drug delivery and tissue engineering. Mater. Sci. Eng. C. 2019, 102, 589–605.Search in Google Scholar

11. Harrer, J.; Rey, M.; Ciarella, S.; Löwen, H.; Janssen, L. M. C.; Vogel, N. Stimuli-responsive behavior of PNiPAm microgels under interfacial confinement. Langmuir, 2019, 35, 10512-10521.Search in Google Scholar

12. Gillies, E.R. Reflections on the evolution of smart polymers. Isr. J. Chem.2019, 59, 1-12.Search in Google Scholar

13. Mrinalini, M.; Prasanthkumar, S. Recent advances on stimuli-responsive smart materials and their applications. ChemPlusChem,2019, 84, 1103-1121.Search in Google Scholar

14. Kuckling, D. Stimuli-responsive gels. Gels, 2018, 4, 60.Search in Google Scholar

15. Zarrintaj, P.; Jouyandeh, M.; Ganjali, M. R.; Hadavand, B. S.; Mozafari, M.; Sheiko, S. S.; Vatankhah-Varnoosfaderan, M.; Gutierrez, T. J.; Saeb, M. R. Thermo-sensitive polymers in medicine: A review. Eur. Polym. J.2019, 117, 402–423.Search in Google Scholar

16. Wei, M.; Gao, Y.; Li, X.; Serpe, M. J. Stimuli-responsive polymers and their applications. Polym. Chem.2017, 8, 127-143.Search in Google Scholar

17. Matsui, S.; Nishizawa, Y.; Uchihashi, T.; Suzuki, D. Monitoring thermoresponsive morphological changes in individual hydrogel microspheres. ACS Omega, 2018, 3, 10836-10842.Search in Google Scholar

18. Ashraf, S.; Park, H. K.; Park, H.; Lee, S. H. Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: Role in drug delivery and tissue engineering. Macromol. Res.2016, 24(4), 297-304.Search in Google Scholar

19. Zhao, H.; An, H.; Xi, B.; Yang, Y.; Qin, J.; Wang, Y.; He, Y.; Wang, X. Self-healing hydrogels with both LCST and UCST through cross-linking induced thermo-response. Polymers, 2019, 11, 490.Search in Google Scholar

20. Saraydın, D.; Karadağ, E.; Işıkver, Y.; Şahiner, N.; Güven O. The influence of preparation methods on the swelling and network properties of acrylamide hydrogels with crosslinkers. J. Macromol. Sci. Part A, 1998, 41(4), 419-431.Search in Google Scholar

21. Işıkver, Y.; Saraydın, D.; Şahiner, N. Poly(hydroxamic acid) hydrogels from poly(acrylamide): preparation and characterization. Polym. Bull.2001, 47, 71-79.Search in Google Scholar

22. Saraydın, D.; Karadağ, E.; Çaldıran, Y.; Güven O. Nicotine-selective radiation-induced poly (acrylamide/maleic acid) hydrogels. Radiat. Phys. Chem., 2001, 60 (3), 203-210.Search in Google Scholar

23. Ekici, S.; Işıkver, Y.; Saraydın D. Poly(acrylamide-sepiolite) composite hydrogels: preparation, swelling and dye adsorption properties. Polym. Bull.2006, 57(2), 231-241.Search in Google Scholar

24. Işıkver, Y.; Saraydın, D.; Aydın, H. In vitro swelling studies in simulated physiological solutions and biocompatibility of NIPAM-based hydrogels with some biochemical parameters of human sera. J. Macromol. Sci. Part A: Pure Appl. Chem.2017, 54(7), 452-457.Search in Google Scholar

25. Öztop, H. N.; Saraydın, D.; Öztop, A. Y.; Karadağ, E.; Işıkver, Y. The Use of Acrylamide Based Hydrogels in Bioethanol Production. Polymer science: research advances, practical applications and educational aspects, Formatex Research Center, A. Méndez-Vilas, A. Solano-Martín, Eds.; 2016, pp. 544-553.Search in Google Scholar

26. Arslan, M.; Saraydın, D.; Öztop, A. Y.; Şahiner, N. Radiation-induced acrylamide/4-vinyl pyridine biocidal hydrogels: Synthesis, characterization, and antimicrobial activitie. Polym.-Plast. Technol. Eng.2017, 56(12), 1295-1306.Search in Google Scholar

27. Işıkver, Y.; Saraydın D. Environmentally sensitive hydrogels: N-isopropyl acrylamide/acrylamide/mono-, di-, tricarboxylic acid crosslinked polymers. Polym. Eng. Sci.2015, 55(4), 843-851.Search in Google Scholar

28. Lai, E. P.; Wang, Y. X.; Wei, Y.; Li, G. Preparation of uniform-sized and dual stimuli-responsive microspheres of poly(N-isopropylacrylamide)/poly(acrylic acid) with semi-IPN structure by one-step method. Polymers2016, 8, 90.Search in Google Scholar

29. Güler, H.; Saraydın, D. Kinetic investigation of some steroids by thermogravimetry. J. Ther. Anal. Calor.1990, 36(2), 733-742.Search in Google Scholar

30. Ozturk, V.; Okay, O. Temperature sensitive poly(N-t-butylacrylamide-co-acrylamide) hydro-gels: synthesis and swelling behavior. Polymer, 2002, 43, 5017-5026.Search in Google Scholar

31. Zhang, X. Z.; Wang, F. J.; Chu, C. C; Thermoresponsive hydrogel with rapid response dynamics. J. Mater. Sci.: Mater. Med.2003, 14, 451-455.Search in Google Scholar

32. Kocak, G.; Tuncer, C.; Bütün, V. pH-responsive polymers, Polym. Chem.2017, 8,144-176.Search in Google Scholar

33. Atta, A. M. Swelling behaviors of polyelectrolyte hydrogels containing sulfonate groups. Polym. Adv. Technol.2002, 13, 567-576.Search in Google Scholar

34. Yang, H.; Song, W.; Zhuang, Y.; Deng, X.; Synthesis of strong electrolyte temperature-sensitive hydrogels by radiation polymerization and application in protein separation. Macromol. Biosci.2003, 3, 400-403.Search in Google Scholar

35. Liu, X.; Tong, Z.; Hu, O. Swelling equilibria of hydrogels with sulfonate groups in water and in aqueous salt solutions. Macromolecules, 1995, 28(11), 3813-3817.Search in Google Scholar

36. Alvarez-Lorenzo, C.; Concheiro, A. Reversible adsorption by a pH- and temperature-sensitive acrylic hydrogel. J. Cont. Rel.2002, 80(1-3), 247-257.Search in Google Scholar

37. Tong, Z.; Liu, X. Swelling equilibria and volume phase transition in hydrogels with strongly dissociating electrolytes. Macromolecules, 1994, 27(3), 844-848.Search in Google Scholar

38. Costa, R. O. R.; Freitas, R.F.S. Phase behavior of poly(N-isopropylacrylamide) in binary aqueous solutions. Polymer, 2002, 43(22), 5879-5885.Search in Google Scholar

39. Kiritoshi, Y.; Ishihara, K. Molecular recognition of alcohol by volume phase transition of cross-linked poly(2-methacryloyloxyethyl phosphorylcholine) gel. Sci. Technol. Adv. Mat.2003, 4(2), 93-98.Search in Google Scholar

40. Kitak, T.; Dumicic, A.; Planinšek, O.; Šibanc, R.; Srcic, S. Determination of solubility parameters of ibuprofen and ibuprofen lysinate. Molecules, 2015, 20, 21549-21568.Search in Google Scholar

41. Makino, K.; Hiyoshi, J.; Ohshima, H. Kinetics of swelling and shrinking of poly (N-isopropyl acrylamide) hydrogels at different temperatures. Coll. Surf. B: Bioint.2000, 19, 197-204.Search in Google Scholar

42. Öztop, H.N.; Saraydın, D.; Şolpan, D.; Güven, O. Adsorption of BSA onto radiation-crosslinked poly (AAm/HPMA/MA) terpolymers. Polym. Bull.2003, 50(3), 183-190.Search in Google Scholar

43. Longo, G. S.; Pérez-Chávez, N. A.; Szleifer I. How protonation modulates the interaction between proteins and pH-responsive hydrogel films. Curr. Op. Coll. Int. Sci. 2019, 41, 27-39.Search in Google Scholar

44. Gomes, P. F.; Loureiro, J. M.; Rodrigues, A. E. Adsorption of human serum albumin (HSA) on a mixed-mode adsorbent: equilibrium and kinetics. Adsorption, 2017, 23, 491-505.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo