1. bookVolume 27 (2019): Issue 2 (December 2019)
Journal Details
License
Format
Journal
First Published
08 Aug 2013
Publication timeframe
2 times per year
Languages
English
access type Open Access

Synthesis and Characterization of Amphiphilic Diblock Copolymer by Reverse Iodine Transfer Polymerization (RITP)

Published Online: 26 Dec 2019
Page range: 185 - 202
Journal Details
License
Format
Journal
First Published
08 Aug 2013
Publication timeframe
2 times per year
Languages
English

Iodine transfer radical homo- and diblock copolymerization of N-[3-(dimethylamino)propyl] methacrylamide (DMAPMA) with methyl methacrylate (MMA) were carried out in the presence of iodine I2 and 2,2′-azobis(isobutyronitrile) (AIBN) as chain transfer agent and initiator, respectively. Using reverse iodine transfer polymerization (RITP) method based on the in situ generation of transfer agents using molecular iodine I2. The homopolymer and copolymer were characterized by FT-IR and 1H NMR. The self-assembly behaviours of diblock copolymer in water are studied by viscosity and tensiometry techniques. The water-soluble fraction of P(DMAPMA-b-MMA) block copolymer formed micelles which were investigated at 25°C in water at 0.2 mg.mL−1 concentration using a tensiometry device. Dynamic light scattering technique (DLS) was performed over a wide range of concentration to determine hydrodynamic size of the aggregates.

Keywords

1. Laschewsky, A. Polymeric Surfactants. Tenside Surf. Det. 2003, 40, 246-249.Search in Google Scholar

2. Cameron, N. S.; Corbierre, M. K.; Eisenberg A. Asymmetric amphiphilic block copolymers in solution: a morphological wonderland. Can. J. Chem.1999, 77, 1311–1326.Search in Google Scholar

3. Riess, G. Micellization of block copolymers. Prog. Polym. Sci.2003, 28, 1107-1170.Search in Google Scholar

4. Creutz, S.; Van Stam J.; De Schryver, F. C.; Jérôme R. Dynamics of Poly((dimethylamino)alkylmethacrylate-block-sodium methacrylate) Micelles. Influence of Hydrophobicity and Molecular Architecture on the Exchange Rate of Copolymer Molecules. Macromolecules1998, 31, 681–689.Search in Google Scholar

5. Storsberg, J.; Laschewsky, A. Polymer Surfactants novel active agents with exceptional properties. SOFW Journal2004, 130, 14-18.Search in Google Scholar

6. Forster, S. Colloids and polymers: amphiphilic block copolymers. Ber. Bunsenges. Phys. Chem.1997, 101, 1671-1978.Search in Google Scholar

7. Vieira, J. B.; Thomas, R. K.; Li, Z. X., Penfold, J. Unusual micelle and surface adsorption behavior in mixtures of surfactants with an ethylene oxide−propylene oxide triblock copolymer. Langmuir2005, 21, 4441–4451.Search in Google Scholar

8. Jada, A.; Siffert, B.; Riess, G. Adsorption at the solid-solution interface and micelle formation in water of the poly(oxyethylene-styrene-oxyethylene) triblock copolymer. Colloids Surf. A Physicochem. Eng. Asp. 1993, 7, 203-209.Search in Google Scholar

9. Antoun, S.; Ghoy, J. F.; Jérôme, R. Micellization of quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) copolymers in water. Polymer2001, 42, 3641-3648.Search in Google Scholar

10. Chang, Y.; Bender, J. D.; Phelps, M. V. B.; Allcock, H. R. Synthesis and self-association behavior of biodegradable amphiphilic poly[bis(ethyl glycinat-N-yl)phosphazene]−poly(ethylene oxide) block copolymers. Biomacromolecules2002, 3, 1364–1369.Search in Google Scholar

11. Garnier, S.; Laschewsky, A. Synthesis of new amphiphilic diblock copolymers and their self-assembly in aqueous solution. Macromolecules2005, 38, 7580–7592.Search in Google Scholar

12. Gaillard, N.; Guyot, A.; Claverie, J. Block copolymers of acrylic acid and butyl acrylate prepared by reversible addition–fragmentation chain transfer polymerization: Synthesis, characterization, and use in emulsion polymerization. J. Polym. Sci. A Polym. Chem.2003, 41, 684-698.Search in Google Scholar

13. Nikova, A. T.; Gordon, V. D.; Cristobal, G.; Talingting, M.R.; Bell, D.C.; Evans, C.; Joanicot, M.; Zasadzinski, J. A.; Weitz, D. A. Swollen vesicles and multiple emulsions from block copolymers. Macromolecules2004, 37, 2215–2218.Search in Google Scholar

14. Tauer, K.; Zimmermann, A.; Schlaad, H. New reactive block copolymers as stabilizers in emulsion polymerization. Macromol. Chem. Phys.2002, 203, 319-327.Search in Google Scholar

15. Riess, G.; Labbe, C. Block copolymers in emulsion and dispersion polymerization. Macromol. Rapid Commun.2004, 25, 401-435Search in Google Scholar

16. Jakobs, B.; Sottmann, T.; Strey, R.; Allgaier, J.; Willner, L.; Richter, D. Amphiphilic block copolymers as efficiency boosters for microemulsions. Langmuir1999, 15, 6707-6711.Search in Google Scholar

17. Endo, H.; Allgaier, J.; Mihailescu, M.; Monkenbusch, M.; Gompper, G.; Richter, D.; Jakobs, B.; Sottmann, T.; Strey R. Amphiphilic block copolymers as efficiency boosters in microemulsions: a SANS investigation of the role of polymers. Appl. Phys. A: Mater. Sci. Process.2002, 74, 392-395.Search in Google Scholar

18. Byelov, D.; Frielinghaus, H.; Allgaier, J.; Gompper, G.; Richter, D. SANS studies of polymer efficiency boosting in microemulsions-diblock copolymers versus homopolymers. Physica B2004, 350, 931-933.Search in Google Scholar

19. Frielinghaus, H.; Byelov, D.; Allgaier, J.; Gompper, G.; Richter, D. Efficiency boosting and optional viscosity tuning in microemulsions studied by SANS. Physica B, 2004, 350, 186-192.Search in Google Scholar

20. Stepanek, M.; Krijtova, K.; Prochazk, K.; Teng, Y.; Webber, S.E.; Munk, P. Solubilization and release of hydrophobic compounds from block copolymer micelles. I. Partitioning of pyrene between polyelectrolyte micelles and the aqueous phase. Acta Polym.1999, 49, 96-102.Search in Google Scholar

21. Kim, J.-H.; Emoto, K.; Iijima, M.; Nagasaki, Y.; Aoyagi, T.; Okano, T.; Sakurai, Y.; Kataoka, K. Core-stabilized polymeric micelle as potential drug carrier: increased solubilization of taxol. Polym. Adv. Technol. 1999, 10, 647-654.Search in Google Scholar

22. Choucair, A.; Eisenberg, A. Interfacial solubilization of model amphiphilic molecules in block copolymer micelles. J. Am. Chem. Soc.2003, 125, 11993–12000.Search in Google Scholar

23. Fundin, J.; Castelleto, V.; Yang, Z.; Hamley, I. W.; Waigh, T. A.; Price, C. A light and X-Ray scattering study of aqueous micellar solutions of a diblock copolymer of propylene oxide and ethylene oxide with solubilized alkylcyanobiphenyl liquid crystals. J. Macromol. Sci. B: Phys. B2004, 43, 893-912.Search in Google Scholar

24. Antonietti, M.; Förster, S.; Hartmann, J.; Oestreich, S. Novel amphiphilic block copolymers by polymer reactions and their use for solubilization of metal salts and metal colloids. Macromolecules1996, 29, 3800-3806.Search in Google Scholar

25. Patil, Y.; Almahdali, S.; Vu, K. B.; Zapsas, G.; Hadjichristidis, N.; Rodionov, V.O. pH-Sensitive amphiphilic block-copolymers for transport and controlled release of oxygen. Polym. Chem. 2017, 8, 4322-4326.Search in Google Scholar

26. Kakizawa, Y.; Kataoka, K. Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Deliv. Rev. 2002, 54, 203-222.Search in Google Scholar

27. Bertin, P. A.; Watson, K. J.; Nguyen, S.T. Indomethacin-Containing nanoparticles derived from amphiphilic polynorbornene:  A model ROMP-Based drug encapsulation system. Macromolecules2004, 37, 8364–8372.Search in Google Scholar

28. Park, E. K.; Lee, S. B.; Lee, Y. M. Preparation and characterization of methoxy poly(ethylene glycol)/poly(ε-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials2005, 26, 1053-1061.Search in Google Scholar

29. Skandalis, A.; Sergides, A. ; Bakandritsos, A.; Pispas S. PLMA-b-POEGMA amphiphilic block copolymers as nanocarriers for the encapsulation of magnetic nanoparticles and indomethacin. Polymers2018, 10, 1-14.Search in Google Scholar

30. Matyjaszewski, K.; Xia, J. Atom transfer radical polymerization. Chem. Rev. 2001, 101, 2921–2990.Search in Google Scholar

31. Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32, 93-146.Search in Google Scholar

32. Hawker, C. J.; Bosman, A. W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev.2001, 101, 3661–3688.Search in Google Scholar

33. Moad, G.; Rizzardo, E.; Thang, S.H. Living radical polymerization by the RAFT process-A first update. Aust. J. Chem.2006, 59, 669-692.Search in Google Scholar

34. David, G.; Boyer, C.; Tonnar, J.; Ameduri, B.; Lacroix-Desmazes, P.; Boutevin, B. Use of iodocompounds in radical polymerization. Chem. Rev. 2006, 106, 3936–3962.Search in Google Scholar

35. Lacroix-Desmazes, P.; Severac, R.; Otazaghine, B.; Boutevin, B. Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem.2003, 44, 683.Search in Google Scholar

36. Lacroix-Desmazes, P.; Severac, R.; Boutevin, B.; Kurowski, V. Solvay S.A. Belg.. WO2003, 03097704.Search in Google Scholar

37. Lacroix-Desmazes, P.; Severac, R.; Boutevin, B.; Bodart, V.; Kurowski, V. W.O. Pat. 2004, 2004094356.Search in Google Scholar

38. Lacroix-Desmazes, P.; Severac, R.; Boutevin, B. Reverse iodine transfer polymerization of methyl acrylate and n-Butyl acrylate. Macromolecules2005, 38, 6299–6309.Search in Google Scholar

39. Boyer, C.; Lacroix-Desmazes, P.; Robin, J.-J.; Boutevin B. Reverse iodine transfer polymerization (RITP) of methyl methacrylate. Macromolecules2006, 39, 4044–4053.Search in Google Scholar

40. Boutevin, B.; Otazaghine, B.; Lacroix-Desmazes, P.; Dubreuil, M.; Bodart, V. 2003, FR. Pat. 2839725.Search in Google Scholar

41. Lacroix-Desmazes, P.; Severac, R., Boutevin, B.; Bodart, V.; Kurowsky, V. 2003, FR. Pat. 2839724.Search in Google Scholar

42. Patra, B. N.; Rayeroux, D.; Lacroix-Desmazes, P. Synthesis of cationic amphiphilic diblock copolymers of poly(vinylbenzyl triethylammonium chloride) and polystyrene by reverse iodine transfer polymerization (RITP). React. Funct. Polym.2010, 70, 408-413.Search in Google Scholar

43. Kawata, T.; Hashidzume, A.; Sato, T. Micellar structure of amphiphilic statistical copolymers bearing dodecyl hydrophobes in aqueous media. Macromolecules2007, 40, 1174–1180Search in Google Scholar

44. Dutta, P.; Dey, J.; Ghosh, G.; Nayak, R. Self-association and microenvironment of random amphiphilic copolymers of sodium N-acryloyl-l-valinate and N-dodecylacrylamide in aqueous solution. Polymer2009, 50, 1516-1525.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo