1. bookVolume 27 (2019): Issue 2 (December 2019)
Journal Details
License
Format
Journal
First Published
08 Aug 2013
Publication timeframe
2 times per year
Languages
English
access type Open Access

Resorcinol-Formaldehyde Carbon Gels Adsorption: A Commentary

Published Online: 26 Dec 2019
Page range: 227 - 250
Journal Details
License
Format
Journal
First Published
08 Aug 2013
Publication timeframe
2 times per year
Languages
English

This work is aimed at highlighting the recent progress of resorcinol-formaldehyde carbon gels adsorption of water pollutants. The synthesis strategies of the carbon gels were discussed to shed some light on the development of mesoporous matrix of carbon gel via the agglomeration of colloidal particles. The surface area of adsorbent can reach as high as 3000 m2/g by CO2 activation, while the surface functionalities are introduced through modification techniques for improving the removal performance. However, most of the recent studies are inclined at batch mode of adsorption with lack of information on the scale-up of the process in continuous mode. Carbon gel is a special class of porous material that can be moulded into desired size, hence a promising adsorbent candidate for monoliths and packings in column adsorption. Therefore, more dedicated works should be established to materialize the applications of carbon gel in column adsorption, particularly at industrial scale.

Keywords

1. Zaini, M. A. A.; Cher, T. Y.; Zakaria, M.; Kamaruddin, M. J.; Setapar, S. H. M.; Yunus, M. A. C. Palm oil mil effluent sludge ash as adsorbent for methylene blue dye removal. Desalin. Water Treat.2014, 52(19-21), 3654-3662.Search in Google Scholar

2. Ming-Twang, S.; Lin-Zhi, L.; Zaini, M. A. A.; Zhi-Yong, Q.; Pei-Yee, A. Y. Activated carbon for dyes adsorption in aqueous solution. In Advances in Environmental Research, J.A. Daniels, Ed.; Nova Science Publishers: New York, 2015, 36; pp 217-234.Search in Google Scholar

3. Masuda, T.; Ogino, I.; Mukai, S. R. Immobilization of magnesium ammonium phosphate crystals within microchannels for efficient ammonia removal. Water Sci. Technol.2013, 67(2), 359-365.Search in Google Scholar

4. Rojas-Cervantes, M. L. Some strategies to lower the production cost of carbon gels. J. Mater. Sci.2014, 50(3), 1017-1040.Search in Google Scholar

5. Kicinski, W.; Norek, M.; Dziura, A. ; Polanski, M. Copolycondensation of heterocyclic aldehydes: A general approach to sulfur and nitrogen dually-doped carbon gels. Micropor. Mesopor. Mat. 2016, 225, 198-209.Search in Google Scholar

6. Strachowski, P.; Fronczak, M.; Olechno, E.; Kowalik, M.; Kicinski, W.; Kaszuwarac, W.; Bystrzejewski, M. Magnetic organic xerogels: efficient adsorbents for the removal of heavy metal ions from aqueous solutions. New J. Chem.2018, 42, 7073-7082.Search in Google Scholar

7. Mukai S. R. Controlling the morphology of carbon gels. Bol. Grupo Espanol Carbon. 2012, 26, 8-11.Search in Google Scholar

8. Al-Muhtaseb, S. A.; Ritter, J. A. Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv. Mater.2003, 15(2), 101-114.Search in Google Scholar

9. Tsuchiya, T.; Mori, T.; Iwamura, S.; Ogino, I.; Mukai, S. R. Binder free synthesis of high-surface-area carbon electrodes via CO2 activation of resorcinol–formaldehyde carbon xerogel disks: Analysis of activation process. Carbon2014, 76, 240-249.Search in Google Scholar

10. Du, A. ; Zhou, B. ; Zhang, Z.; Shen, J. A special material or a new state of matter: A review and reconsideration of the aerogel. Materials2013, 6(3), 941-968Search in Google Scholar

11. Czakkel, O.; Marthi, K.; Geissler, E.; László, K. Influence of drying on the morphology of resorcinol–formaldehyde-based carbon gels. Micropor. Mesopor. Mater.2005, 86(1-3), 124-133.Search in Google Scholar

12. Zhi, L. L. ; Hui, T. S.; Zaini, M. A. A. Carbon gel-based adsorbents for anionic dyes removal. In Activated Carbon Prepared From Various Precursors, H.S. Min, Ed.; Ideal International E – Publication Pvt. Ltd, Indore, 2017 ; pp. 62-84.Search in Google Scholar

13. Zhang, R.; Li, W.; Liang, X.; Wu, G.; Lu, Y.; Zhan, L.; Lu, C.; Ling, L. Effect of hydrophobic group in polymer matrix on porosity of organic and carbon aerogels from sol–gel polymerization of phenolic resole and methylolated melamine. Micropor. Mesopor. Mater.2003, 62(1-2),17-27.Search in Google Scholar

14. Rey-Raap, N.; Arenillas, A.; Menéndez, J. A. Carbon gels and their applications: A review of patents. Submicron Porous Mater.2017, 25-52.Search in Google Scholar

15. Pekala, R. W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci.1989, 24(9), 3221-3227.Search in Google Scholar

16. Alshrah, M.; Tran, M.; Gong, P.; Naguib, H. E.; Park, C. B. Development of high-porosity resorcinol formaldehyde aerogels with enhanced mechanical properties through improved particle necking under CO2 supercritical conditions. J. Colloid Interface Sci. 2017, 485, 65-74.Search in Google Scholar

17. Mirzaeian, M.; Hall, P. J. The control of porosity at nano scale in resorcinol formaldehyde carbon aerogels. J. Mater. Sci.2009, 44(10), 2705-2713.Search in Google Scholar

18. Zaini, M. A. A.; Yoshida, S.; Mori, T. ; Mukai, S.R. Preliminary evaluation of resorcinol-formaldehyde carbon gels for water pollutants removal. Acta Chim. Slovaca.2017, 10(1), 54-60.Search in Google Scholar

19. Elkhatat, A. M.; Al-Muhtaseb, S. A. Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 2011, 23, 2887-2903.Search in Google Scholar

20. Zuo, L.; Zhang, Y.; Zhang, L.; Miao, Y.; Fan, W.; Liu, T. Polymer/carbon-based hybrid aerogels: preparation, properties and applications. Materials2015, 8(10), 6806-6848.Search in Google Scholar

21. Xiao, Z.; Peng, F.; Li, X.; Zhang, R.; He, W.; Zhou, T. Surface modification of malonic acid-catalyzed carbon xerogels and their high performance for adsorption of Cu (II) ions. Surf. Interface Anal. 2013, 45, 1869-1877.Search in Google Scholar

22. Tang, S. H.; Zaini, M. A. A. Congo red removal by HNO3-modified resorcinol-formaldehyde carbon gels. Chem. Eng. Trans. 2017, 56, 835-840.Search in Google Scholar

23. Zhi, L. L.; Zaini, M. A. A. Equilibrium and kinetic adsorption studies of reactive orange onto resorcinol-formaldehyde carbon gels. Chem. Eng. Trans. 2017, 56, 811-816.Search in Google Scholar

24. Paez, C. A.; Contreras, M. S.; Léonard, A.; Blacher, S.; Olivera-Fuentes, C. G.; Pirard, J.; Job, N. Effect of CO2 activation of carbon xerogels on the adsorption of methylene blue. Adsorption2012, 18, 199-211.Search in Google Scholar

25. Wu, X.; Wu, D.; Fu, R.; Zeng, W. Preparation of carbon aerogels with different pore structures and their fixed bed adsorption properties for dye removal. Dyes Pigments2012, 95(3), 689-694.Search in Google Scholar

26. Yang, B.; Yu, C.; Yu, Q.; Zhang, X.; Li, Z. ; Lei, L. N-doped carbon xerogels as adsorbents for the removal of heavy metal ions from aqueous solution. RSC Adv. 2015, 5, 7182-7191.Search in Google Scholar

27. Osinska, M. Removal of lead(II), copper(II), cobalt(II) and nickel(II) ions from aqueous solutions using carbon gels. J. Sol-Gel Sci. Technol.2017, 81, 678-692.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo