1. bookVolume 27 (2019): Issue 2 (December 2019)
Journal Details
License
Format
Journal
First Published
08 Aug 2013
Publication timeframe
2 times per year
Languages
English
access type Open Access

Structural and Optoelectronic Properties of Zinc Sulfide Thin Films Synthesized by Co-Precipitation Method

Published Online: 26 Dec 2019
Page range: 287 - 302
Journal Details
License
Format
Journal
First Published
08 Aug 2013
Publication timeframe
2 times per year
Languages
English

Wide bandgap Zinc Sulfide nanocrystals are prepared by a simple co-precipitation method at different precursor concentrations. The influence of sulphur concentration in Zinc sulfide on morphological, optical and electric properties is found to be significant. The Zinc Sulfide nanomaterial was prepared using low-cost starting materials and deionised water as the solvent. As synthesized Zinc Sulfide nanocrystals were analyzed using X-ray diffraction (XRD), Energy Dispersive Spectroscopy (EDS) analysis, UV-Visible Spectrophotometry, Photoluminescence (PL), Scanning electron Microscopy (SEM), Ellipsometry techniques and electric conductivity measurements. XRD patterns revealed that ZnS nanocrystals are polycrystalline, cubic phase with (111) preferred orientation. The obtained crystallites have sizes in the range of 5 to 11 nm. EDS pattern confirms the purity of the films. From optical absorption measurements, it is clear that the direct energy gap decreases from 5.2 to 4.4eV with the increase in sulphur concentration in ZnS and exhibit large quantum confinement effect. Ellipsometry was used to determine the optical constants and film thickness. The films deposited on ITO – coated glass was used to record the IV Characteristics of the films by two probe method. The wide-bandgap, conducting materials have applications in optoelectronic devices such as high-frequency UV detectors and thin-film solar cells.

Keywords

1. Sarute, U.; Yingyot, I. A comprehensive review on ZnS: From synthesis to an approach on solar cell, Renew. Sust. Energ. Rev.2016, 55, 17-24.Search in Google Scholar

2. Konstantatos, G.; Sargent, E. H. Colloidal Quantum Dot Optoelectronics and Photovoltaics, Cambridge University Press, UK, 2013.Search in Google Scholar

3. Fang, X.; Zhai, T.; Gautam, U. K.; Li,L.; Wu, L.; Bando, Y.; Golberg, D. ZnS nanostructures: From synthesis to applications. Prog. Mater. Sci.2011, 56, 175-287.Search in Google Scholar

4. Fang, X.; Bando, Y.; Gautam, U. K.; Zhai, T.; Zeng, H.; Xu, X.; Liao, M.; Golberg, D. ZnO and ZnS Nanostructures: Ultraviolet-Light Emitters, Lasers and Sensors. Crit. Rev. Solid State Sci.2009, 34, 190-223.Search in Google Scholar

5. Ates, A.; Yildirım, M. Ali.; Kundakci, M.; Astam, A. Annealing and light effect on optical and electrical properties of ZnS thin films grown with the SILAR method. Mater. Sci. Semicond. Process.2007, 10, 281-286.Search in Google Scholar

6. Gangopadhyay, U.; Kim, K.; Mangalaraj, D.; Yi, J. Low-cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells. Appl. Surf. Sci.2004, 230, 364-370.Search in Google Scholar

7. Bindu, K. R.; Sreenivasan, P. V.; Martinez, A. I.; Anila, E. I. a-Axis oriented ZnS thin film synthesised by dip-coating method. J. Sol-Gel Sci. Technol.2013, 68, 351-355.Search in Google Scholar

8. Ummartyotin, S.; Bunnak, N.; Juntaro, J.; Sain, M.; Manuspiya, H. Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder. Solid State Sci.2012, 14, 299-304.Search in Google Scholar

9. Goktas, A.; Aslan, F.; Yasar, E.; Mutlu, I. H. Preparation and characterisation of thickness-dependent nano-structured ZnS thin films by sol-gel technique. J. Mater. Sci.: Mater. Electron.2012, 23, 1361.Search in Google Scholar

10. Firoozifar, S. A. R.; Behjat. A.; Kadivar, E.; Ghorashia, S. M. B.; Zarandia, M. B. A study of the optical properties and adhesion of zinc sulfide anti-reflection thin film coated on a germanium substrate. Appl. Surf. Sci.2011, 258, 818-821.Search in Google Scholar

11. Tec-Yam, S.; Rojas, J.; Rejon, V.; Oliva, A. I. High-quality anti-reflective ZnS thin films prepared by chemical bath deposition. Mater. Chem. Phys.2012, 136, 386-393.Search in Google Scholar

12. Yoo, D.; Choi, M. S.; Heo, S. C.; Chung, C.; Kim, D.; Choi, C. Structural, Optical and Chemical Analysis of Zinc Sulfide Thin Film Deposited by RF-Magnetron Sputtering and Post Deposition Annealing. Met. Mater. Int.2013, 19, 1309-1316.Search in Google Scholar

13. Kole, A. K.; Kumbhakar, P. Cubic-to-hexagonal phase transition and optical properties of chemically synthesized ZnS nanocrystals. Results Phys.2012, 2, 150-155.Search in Google Scholar

14. Saleem, M.; Fang, L.; Wakeel, A.; Rashad, M.; Kong, C. Y. Simple Preparation and Characterization of Nano-Crystalline Zinc Oxide Thin Films by Sol-Gel Method on Glass Substrate. World J. Condens. Matter. Phys.2012, 2, 10-15.Search in Google Scholar

15. Lewis, A. E. Review of metal sulphide precipitation. Hydrometallurgy2010, 104, 222-234.Search in Google Scholar

16. Hoa, T. T. Q.; Vu, L. V.; Canh, T. D.; Long, N. N. Preparation of ZnS nanoparticles by hydrothermal method. Phys.: J. Phy. Conf. Ser.2009, 187, 012081.Search in Google Scholar

17. Haque, F.; Rahman, K. S.; Islam, M. A.; Rashid, M. J.; Akhtaruzzaman, M.; Alam, M. M.; Alothman, Z. A.; Sopian, K.; Amin, N. Growth optimization of ZnS thin films by rf magnetron sputtering as prospective buffer layer in thin-film solar cells. Chalcogenide Lett.2014, 11, 189-197.Search in Google Scholar

18. Denzler, D.; Olschewski, M.; Sattler, K. Luminescence studies of localized gap states in colloidal ZnS nanocrystals. J. Appl. Phys.1998, 84, 2841-2845.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo