1. bookVolume 71 (2021): Issue 4 (December 2021)
Journal Details
License
Format
Journal
eISSN
1846-9558
First Published
28 Feb 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Determination of penicillamine, tiopronin and glutathione in pharmaceutical formulations by kinetic spectrophotometry

Published Online: 03 Apr 2021
Page range: 619 - 630
Accepted: 31 Oct 2020
Journal Details
License
Format
Journal
eISSN
1846-9558
First Published
28 Feb 2007
Publication timeframe
4 times per year
Languages
English
Abstract

A novel and simple method for the determination of penicillamine (PEN), tiopronin (mercaptopropionyl glycine, MPG) and glutathione (GSH) in pharmaceutical formulations by kinetic spectrophotometry has been developed and validated. It is based on the redox reaction where the thiol compound (RSH) reduces CuII-neocuproine complex to CuI-neocuproine complex. The non-steady state signal of the formed CuI- neocuproine complex is measured at 458 nm. The initial rate and fixed time (at 1 min) methods were validated. The calibration graph was linear in the concentration range from 8.0 × 10‒7 to 8.0 × 10‒5 mol L−1 for the initial rate method and from 6.0 × 10‒7 to 6.0 × 10−5 mol L−1 for the fixed time method, with the detection limits of 2.4 × 10−7 and 1.4 × 10‒7 mol L−1, resp. Levels of PEN, MPG and GSH in pharmaceutical formulations were successfully assayed by both methods. The advantages of the presented methods include sensitivity, short analysis time, ease of application and low cost.

Keywords

1. G. Bjørklund, P. Oliinyk, R. Lysiuk, M. S. Rahaman, H. Antonyak, I. Lozynska, L. Lenchyk and M. Peana, Arsenic intoxication: general aspects and chelating agents, Arch. Toxicol.94 (2020) 1879–1897; https://doi.org/10.1007/s00204-020-02739-w10.1007/s00204-020-02739-w721046332388818Search in Google Scholar

2. M. K. Lawson, M. Valko, M. T. D. Cronin and K. Jomová, Chelators in iron and copper toxicity, Curr. Pharmacol. Rep.2 (2016) 271–280; https://doi.org/10.1007/s40495-016-0068-810.1007/s40495-016-0068-8Search in Google Scholar

3. M. Abou Chakra, A. E. Dellis, A. G. Papatsoris and M. Moussa, Established and recent developments in the pharmacological management of urolithiasis: an overview of the current treatment armamentarium, Expert Opin. Pharmacother.21 (2020) 85–96; https://doi.org/10.1080/14656566.2019.168597910.1080/14656566.2019.168597931714803Search in Google Scholar

4. M. S. C. Morgan and M. S. Pearle, Medical management of renal stones, BMJ352 (2016) Article ID i52; https://doi.org/10.1136/bmj.i5210.1136/bmj.i5226977089Search in Google Scholar

5. K. Aquilano, S. Baldelli and M. R. Ciriolo, Glutathione: New roles in redox signaling for an old antioxidant, Front. Pharmacol. 5 (2014) Article ID 196; https://doi.org/10.3389/fphar.2014.0019610.3389/fphar.2014.00196414409225206336Search in Google Scholar

6. Y. Honda, T. Kessoku, Y. Sumida, T. Kobayashi, T. Kato, Y. Ogawa, W. Tomeno, K. Imajo, K. Fujita, M. Yoneda, K. Kataoka, M. Taguri, T. Yamanaka, Y. Seko, S. Tanaka, S. Saito, M. Ono, S. Oeda, Y. Eguchi, W. Aoi, K. Sato, Y. Itoh and A. Nakajima, Efficacy of glutathione for the treatment of nonalcoholic fatty liver disease: An open-label, single-arm, multicenter, pilot study, BMC Gastroenterol.17 (2017) Article ID 96 (8 pages); https://doi.org/10.1186/s12876-017-0652-310.1186/s12876-017-0652-3554943128789631Search in Google Scholar

7. S. Weschawalit, S. Thongthip, P. Phutrakool and P. Asawanonda, Glutathione and its antiaging and antimelanogenic effects, Clin. Cosmet. Investig. Dermatol.10 (2017) 147–153; https://doi.org/10.2147/ccid.s12833910.2147/CCID.S128339541347928490897Search in Google Scholar

8. British Pharmacopoeia, The Stationery Office, London 2009.Search in Google Scholar

9. L. Litao, L. Jing, and L. Quanmin, A novel method for the determination of tiopronin by using potassium ferricyanide as spectroscopic probe reagent in pharmaceutical and urine samples, J. Anal. Chem.67 (2012) 41–46; https://doi.org/10.1134/s106193481201009110.1134/S1061934812010091Search in Google Scholar

10. M. Skowron and W. Ciesielski, Spectrophotometric determination of methimazole, d-penicilla-mine, captopril, and disulfiram in pure form and drug formulations, J. Anal. Chem.66 (2011) 714–719; https://doi.org/10.1134/s106193481108013210.1134/S1061934811080132Search in Google Scholar

11. L. Kukoc-Modun and N. Radic, Spectrophotometric determination of N-acetyl-l-cysteine and N-(2-mercaptopropionyl)-glycine in pharmaceutical preparations, Int. J. Anal. Chem. 2011 (2011) Article ID 140756; https://doi.org/10.1155/2011/14075610.1155/2011/140756310384521647283Search in Google Scholar

12. Q. Li and L. Gao, Spectrophotometric determination of tiopronin using its catalytic reaction between sodium 1,2-naphthoquinone-4-sulfonate and hydroxyl ion, Anal. Sci.25 (2009) 89–93; https://doi.org/10.2116/analsci.25.8910.2116/analsci.25.89Search in Google Scholar

13. A. A. Al-Majed, Spectrophotometric estimation of D-penicillamine in bulk and dosage forms using 2,6-dichloroquinone-4-chlorimide (DCQ), J. Pharm. Biomed. Anal.21 (1999) 827–833; https://doi.org/10.1016/s0731-7085(99)00215-010.1016/S0731-7085(99)00215-0Search in Google Scholar

14. M. A. Raggi, L. Nobile and A. G. Giovannini, Spectrophotometric determination of glutathione and of its oxidation product in pharmaceutical dosage forms, J. Pharm. Biomed. Anal.9 (1991) 1037–1040; https://doi.org/10.1016/0731-7085(91)80041-710.1016/0731-7085(91)80041-7Search in Google Scholar

15. A. Besada, N. B. Tadros and Y. A. Gawargious, Copper(II)-neocuproine as colour reagent for some biologically active thiols: Spectrophotometric determination of cysteine, penicillamine, glutathione, and 6-mercaptopurine, Mikrochim. Acta99 (1989) 143–146; https://doi.org/10.1007/bf0124280010.1007/BF01242800Search in Google Scholar

16. Y. H. Chen, F. S. Tian and G. F. Zhang, High-sensitivity spectrofluorimetric determination of tiopronin based on inhibition of hemoglobin, Luminescence26 (2011) 477–480; https://doi.org/10.1002/bio.125510.1002/bio.1255Search in Google Scholar

17. J. Xu, R. Cai, J. Wang, Z. Liu and X. Wu, Fluorometric assay of tiopronin based on inhibition of multienzyme redox system, J. Pharm. Biomed. Anal.39 (2005) 334–338; https://doi.org/10.1016/j.jpba.2005.03.00410.1016/j.jpba.2005.03.004Search in Google Scholar

18. S. M. Al-Ghannam, A. M. El-Brashy and B. S. Al-Farhan, Fluorimetric determination of some thiol compounds in their dosage forms, Farmaco57 (2002) 625–629; https://doi.org/10.1016/s0014-827x(02)01223-510.1016/S0014-827X(02)01223-5Search in Google Scholar

19. A. A. Al-Majed, Specific spectrofluorometric quantification of D-penicillamine in bulk and dosage forms after derivatization with 4-fluoro-7-nitrobenzo-2-oxa-1,3-diazole, Anal. Chim. Acta408 (2000) 169–175; https://doi.org/10.1016/s0003-2670(99)00869-710.1016/S0003-2670(99)00869-7Search in Google Scholar

20. J. A. Murillo Pulgarín, J. M. Lemus Gallego and M. N. Sánchez García, Determination of tiopronin in pharmaceutical preparations by time resolved chemiluminescence using the stopped-flow technique, Anal. Lett.46 (2013) 1836–1848; https://doi.org/10.1080/00032719.2012.73530510.1080/00032719.2012.735305Search in Google Scholar

21. F. E. O. Suliman, M. M. Al-Hinai, S. M. Z. Al-Kindy and S. B. Salama, Enhancement of the chemiluminescence of penicillamine and ephedrine after derivatization with aldehydes using tris(bipyridyl) ruthenium(II) peroxydisulfate system and its analytical application, Talanta74 (2008) 1256–1264; https://doi.org/10.1016/j.talanta.2007.08.04010.1016/j.talanta.2007.08.04018371778Search in Google Scholar

22. J. Lu, C. Lau, S. Yagisawa, K. Ohta and M. Kai, A simple and sensitive chemiluminescence method for the determination of tiopronin for a pharmaceutical formulation, J. Pharm. Biomed. Anal.33 (2003) 1033–1038; https://doi.org/10.1016/s0731-7085(03)00413-810.1016/S0731-7085(03)00413-8Search in Google Scholar

23. J. B. Raoof, R. Ojani, M. Majidian and F. Chekin, Homogeneous electrocatalytic oxidation of D-penicillamine with ferrocyanide at a carbon paste electrode: Application to voltammetric determination, J. Appl. Electrochem.39 (2009) 799–805; https://doi.org/10.1007/s10800-008-9724-y10.1007/s10800-008-9724-ySearch in Google Scholar

24. J. B. Raoof, R. Ojani and F. Chekin, Electrochemical oxidation of 4-chlorocatechol in the presence of some sulphydryl compounds: Applications to voltammetric detection of d-penicillamine, glutathione and l-cysteine, Anal. Bioanal. Electrochem.1 (2009) 200–215; https://www.researchgate.net/publication/279705715Search in Google Scholar

25. A. A. J. Torriero, H. D. Piola, N. A. Martínez, N. V. Panini, J. Raba and J. J. Silber, Enzymatic oxidation of tert-butylcatechol in the presence of sulfhydryl compounds: Application to the amperometric detection of penicillamine, Talanta71 (2007) 1198–1204; https://doi.org/10.1016/j.talanta.2006.06.02710.1016/j.talanta.2006.06.027Search in Google Scholar

26. A. Martinović and N. Radić, Kinetic potentiometric determination of some thiols with iodide ion-sensitive electrode, Anal. Lett.40 (2007) 2851–2859; https://doi.org/10.1080/0003271070160388410.1080/00032710701603884Search in Google Scholar

27. L. Kukoc-Modun and N. Radić, Potentiometric determination of N-(2-Mercaptopropionyl)-glycine using an electrode with AgI-based membrane, Croat. Chem. Acta79 (2006) 533–539.Search in Google Scholar

28. R. M. Soliman, G. M. Hadad, R. A. Abdel Salam and M. K. Mesbah, Quantitative determination of glutathione in presence of its degradant in a pharmaceutical preparation using HPLC-DAD and identification by LC-ESI-MS, J. Liq. Chromatogr. Relat. Technol.37 (2014) 548–559; https://doi.org/10.1080/10826076.2012.74949710.1080/10826076.2012.749497Search in Google Scholar

29. V. Sutariya, D. Wehrung and W. J. Geldenhuys, Development and validation of a novel RP-HPLC method for the analysis of reduced glutathione, J. Chromatogr. Sci.50 (2012) 271–276; https://doi.org/10.1093/chromsci/bmr05510.1093/chromsci/bmr055Search in Google Scholar

30. L. Manna, L. Valvo and P. Betto, Determination of oxidized and reduced glutathione in pharmaceuticals by reversed-phase high-performance liquid chromatography with dual electrochemical detection, J. Chromatogr. A846 (1999) 59–64; https://doi.org/10.1016/s0021-9673(99)00427-610.1016/S0021-9673(99)00427-6Search in Google Scholar

31. A. Martinović-Bevanda and N. Radić, Spectrophotometric sequential injection determination of D-penicillamine based on a complexation reaction with nickel ion, Anal. Sci.29 (2013) 669–671; https://doi.org/10.2116/analsci.29.66910.2116/analsci.29.66923749136Search in Google Scholar

32. T. D. Karakosta and P. D. Tzanavaras, Automated derivatization of pharmaceutically active thiols under flow conditions using an o-phthalaldehyde/glycine fluorogenic system and sequential injection analysis, Anal. Lett.44 (2011) 2530–2542; https://doi.org/10.1080/00032719.2011.55186210.1080/00032719.2011.551862Search in Google Scholar

33. L. Kukoc-Modun and N. Radić, Flow-injection spectrophotometric determination of tiopronin based on coupled redox-complexation reaction, Chem. Anal. (Warsaw) 54 (2009) 871–882; https://www.bib.irb.hr/395955Search in Google Scholar

34. F. E. O. Suliman, Z. H. Al-Lawati and S. M. Z. Al-Kindy, A spectrofluorimetric sequential injection method for the determination of penicillamine using fluorescamine in the presence of β-cyclodextrins, J. Fluoresc.18 (2008) 1131–1138; https://doi.org/10.1007/s10895-008-0363-910.1007/s10895-008-0363-918496741Search in Google Scholar

35. B. G. T. Corominas, J. Pferzschner, M. C. Icardo, L. L. Zamora and J. M. Calatayud, In situ generation of Co(II) by use of a solid-phase reactor in an FIA assembly for the spectrophotometric determination of penicillamine, J. Pharm. Biomed. Anal.39 (2005) 281–284; https://doi.org/10.1016/j.jpba.2005.02.04410.1016/j.jpba.2005.02.044Search in Google Scholar

36. A. Agarwal, S. Prasad and R. M. Naik, Inhibitory kinetic spectrophotometric method for the quantitative estimation of D-penicillamine at micro levels, Microchem. J.128 (2016) 181–186; https://doi.org/10.1016/j.microc.2016.04.00510.1016/j.microc.2016.04.005Search in Google Scholar

37. R. M. Naik, S. Prasad, B. Kumar and V. Chand, Kinetic assay of D-penicillamine in pure and pharmaceutical formulations based on ligand substitution reaction, Microchem. J.111 (2013) 97–102; https://doi.org/10.1016/j.microc.2012.07.01510.1016/j.microc.2012.07.015Search in Google Scholar

38. M. I. Walash, A. M. El-Brashy, M. S. Metwally and A. A. Abdelal, Spectrophotometric and kinetic determination of some sulphur containing drugs in bulk and drug formulations, Bull. Korean Chem. Soc.25 (2004) 517–524; https://doi.org/10.5012/bkcs.2004.25.4.51710.5012/bkcs.2004.25.4.517Search in Google Scholar

39. M. I. Walash, M. E. S. Metwally, A. M. El-Brashy and A. A. Abdelal, Kinetic spectrophotometric determination of some sulfur containing compounds in pharmaceutical preparations and human serum, Farmaco58 (2003) 1325–1332; https://doi.org/10.1016/s0014-827x(03)00167-810.1016/S0014-827X(03)00167-8Search in Google Scholar

40. A. Martinović, L. Kukoc-Modun and N. Radić, Kinetic spectrophotometric determination of thiols and ascorbic acid, Anal. Lett.40 (2007) 805–815; https://doi.org/10.1080/0003271060101793810.1080/00032710601017938Search in Google Scholar

41. L. Kukoc-Modun and N. Radić, Novel kinetic spectrophotometric method for determination of tiopronin [N-(2-mercaptopropionyl)-glycine], Croat. Chem. Acta83 (2010) 189–195.Search in Google Scholar

42. L. Kukoc-Modun and N. Radic, Kinetic spectrophotometric determination of N-acetyl-l-cysteine based on a coupled redox-complexation reaction, Anal. Sci.26 (2010) 491–495; https://doi.org/10.2116/analsci.26.49110.2116/analsci.26.49120410574Search in Google Scholar

43. N. Radić, L. Kukoc-Modun and M. Biocic, Kinetic spectrophotometric determination of N-acetyl- - l-cysteine based on the reduction of copper(II)-neocuproine reagent, Croat. Chem. Acta86 (2013) 65–71; https://doi.org/10.5562/cca216110.5562/cca2161Search in Google Scholar

44. C. J. Hawkins and D. D. Perrin, Oxidation–reduction potentials of metal complexes in water. Part II. Copper complexes with 2,9-dimethyl- and 2-chloro-1,10-phenanthroline, J. Chem. Soc. (1963) 2996–3002; https://doi.org/10.1039/jr963000299610.1039/JR9630002996Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo