1. bookVolume 72 (2022): Issue 2 (June 2022)
Journal Details
First Published
28 Feb 2007
Publication timeframe
4 times per year
access type Open Access

Medicinal plants with anti-SARS-CoV activity repurposing for treatment of COVID-19 infection: A systematic review and meta-analysis

Published Online: 30 Dec 2021
Page range: 199 - 224
Accepted: 14 Sep 2021
Journal Details
First Published
28 Feb 2007
Publication timeframe
4 times per year

The novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus) has emerged as a significant threat to public health with startling drawbacks in all sectors globally. This study investigates the practicality of some medicinal plants for SARS-CoV-2 therapy using a systematic review and meta-analysis of their reported SARS-CoV-1 inhibitory potencies. Relevant data were systematically gathered from three databases, viz., Web of Science, PubMed and Scopus. The information obtained included botanical information, extraction method and extracts concentrations, as well as the proposed mechanisms. Fourteen articles describing 30 different plants met our eligibility criteria. Random effects model and subgroup analysis were applied to investigate heterogeneity. According to subgroup analysis, the substantial heterogeneity of the estimated mean based on the IC50 values reporting the most potent anti-SARS-CoV 3C--like protease (3CLpro) inhibitors (10.07 %, p < 0.0001), was significantly higher compared to the most active anti-SARS-CoV papain-like protease (PLpro) inhibitors (6.12 %, p < 0.0001). More importantly, the literature analysis revealed that fruit extracts of Rheum palmatum L. and the compound cryptotanshinone isolated from the root of Salvia miltiorrhiza (IC50 = 0.8 ± 0.2 μmol L–1) were excellent candidates for anti--SARS-CoV targeting PLpro. Meanwhile, iguesterin (IC50 = 2.6 ± 0.6 μmol L–1) isolated from the bark of Tripterygium regelii emerged as the most excellent candidate for anti-SARS--CoV targeting 3CLpro. The present systematic review and meta-analysis provide valuable and comprehensive information about potential medicinal plants for SARS-CoV-2 inhibition. The chemotypes identified herein can be adopted as a starting point for developing new drugs to contain the novel virus.


F. Wu, S. Zhao, B. Yu, Y. M. Chen, W. Wang, Z. G. Song, Y. Hu, Z. W. Tao, J. H. Tian, Y. Y. Pei, M. L. Yuan, Y. L. Zhang, F. H. Dai, Y. Liu, Q. M. Wang, J. J. Zheng, L. Xu, E. C. Holmes and Y. Z. Zhang, A new coronavirus associated with human respiratory disease in China, Nature 579 (2020) 265–269; https://doi.org/10.1038/s41586-020-2008-310.1038/s41586-020-2008-3Search in Google Scholar

X. Xu, P. Chen, J. Wang, J. Feng, H. Zhou, X. Li, W. Zhong and P. Hao, Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission, Sci. China Life Sci. 63 (2020) 457–460; https://doi.org/10.1007/s11427-020-1637-510.1007/s11427-020-1637-5Search in Google Scholar

A. J. Rodríguez-Morales, K. MacGregor, S. Kanagarajah, D. Patel and P. Schlagenhauf, Going global – Travel and the 2019 novel coronavirus, Travel Med. Infect. Dis. 33 (2020) 101578; https://doi.org/10.1016/j.tmaid.2020.10157810.1016/j.tmaid.2020.101578Search in Google Scholar

C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang and B. Cao, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet 395 (2020) 497–506; https://doi.org/10.1016/S0140-6736Search in Google Scholar

E. Prompetchara, C. Ketloy and T. Palaga, Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic, Asian Pac. J. Allergy Immunol. 38 (2020) 1–9; https://doi.org/10.12932/AP-200220-077210.12932/AP-200220-0772Search in Google Scholar

X. Yang, Y. Yu, J. Xu, H. Shu, J. Xia, H. Liu, Y. Wu, L. Zhang, Z. Yu, M. Fang, T. Yu, Y. Wang, S. Pan, X. Zou, S. Yuan and Y. Shang, Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study, Lancet Respir. Med. 8 (2020) 475–481; https://doi.org/10.1016/S2213-2600(20)30079-510.1016/S2213-2600(20)30079-5Search in Google Scholar

F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, J. Xiang, Y. Wang, B. Song, X. Gu, L. Guan, Y. Wei, H. Li, X. Wu, J. Xu, S. Tu, Y. Zhang, H. Chen and B. Cao, Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study, Lancet 395 (2020) 1054–1062; https://doi.org/10.1016/S0140-6736(20)30566-310.1016/S0140-6736(20)30566-3Search in Google Scholar

Coronaviridae Study Group of the International Committee on Taxonomy of Viruses, The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2, Nat. Microbiol. 5 (2020) 536–544; https://doi.org/10.1038/s41564-020-0695-z10.1038/s41564-020-0695-z709544832123347Search in Google Scholar

J. S. Rest and D. P. Mindell, SARS associated coronavirus has a recombinant polymerase and coronaviruses have a history of host-shifting, Infect. Genet. Evol. 3 (2003) 219–225; https://doi.org/10.1016/j.meegid.2003.08.00110.1016/j.meegid.2003.08.001712987814522185Search in Google Scholar

C. C. Hon, T. Y. Lam, Z. L. Shi, A. J. Drummond, C. W. Yip, F. Zeng, P. Y. Lam and F. C. Leung, Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus, J. Virol. 82 (2008) 1819–1826; https://doi.org/10.1128/JVI.01926-0710.1128/JVI.01926-07225872418057240Search in Google Scholar

D. Schoeman and B. C. Fielding, Coronavirus envelope protein: current knowledge, Virol. J. 16 (2019) Article ID 69 (22 pages); https://doi.org/10.1186/s12985-019-1182-010.1186/s12985-019-1182-0653727931133031Search in Google Scholar

P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, H. R. Si, Y. Zhu, B. Li, C. L. Huang, H. D. Chen, J. Chen, Y. Luo, H. Guo, R. D. Jiang, M. Q. Liu, Y. Chen, X. R. Shen, X. Wang, X. S. Zheng, K. Zhao, Q. J. Chen, F. Deng, L. L. Liu, B. Yan, F. X. Zhan, Y. Y. Wang, G. F. Xiao and Z. L. Shi, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579 (2020) 270–273; https://doi.org/10.1038/s41586-020-2012-710.1038/s41586-020-2012-7Search in Google Scholar

R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H. Song, B. Huang, N. Zhu, Y. Bi, X. Ma, F. Zhan, L. Wang, T. Hu, H. Zhou, Z. Hu, W. Zhou, L. Zhao, J. Chen, Y. Meng, J. Wang, Y. Lin, J. Yuan, Z. Xie, J. Ma, W. J. Liu, D. Wang, W. Xu, E. C. Holmes, G. F. Gao, G. Wu, W. Chen, W. Shi and W. Tan, Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding, Lancet 395 (2020) 565–574; https://doi.org/10.1016/S0140-6736(20)30251-810.1016/S0140-6736(20)30251-8Search in Google Scholar

K. Anand, J. Ziebuhr, P. Wadhwani, J. R. Mesters and R. Hilgenfeld, Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs, Science 300 (2003) 1763–1767; https://doi.org/10.1126/science.108565810.1126/science.1085658Search in Google Scholar

M. T. ul Qamar, S. M. Alqahtani, M. A. Alamri and L. L. Chen, Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants, J. Pharm. Anal. 10 (2020) 313–319; https://doi.org/10.1016/j.jpha.2020.03.00910.1016/j.jpha.2020.03.009Search in Google Scholar

A. L. Totura and R. S. Baric, SARS coronavirus pathogenesis: Host innate immune responses and viral antagonism of interferon, Curr. Opin. Virol. 3 (2012) 264–275; https://doi.org/10.1016/j.coviro.2012.04.00410.1016/j.coviro.2012.04.004Search in Google Scholar

T. H. Mogensen and S. R. Paludan, Molecular pathways in virus-induced cytokine production, Microbiol. Mol. Biol. Rev. 65 (2001) 131–150; https://doi.org/10.1128/MMBR.65.1.131-150.200110.1128/MMBR.65.1.131-150.2001Search in Google Scholar

C. K. Wong, C. W. Lam, A. K. Wu, W. K. Ip, N. L. Lee, I. H. Chan, L. C. Lit, D. S. Hui, M. H. Chan, S. S. Chung and J. J. Sung, Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome, Clin. Exp. Immunol. 136 (2004) 95–103; https://doi.org/10.1111/j.1365-2249.2004.02415.x10.1111/j.1365-2249.2004.02415.xSearch in Google Scholar

O. Ebenezer, M. A. Jordaan, R. E. Ogunsakin and M. Shapi, Potential SARS-COV preclinical (in vivo) compounds targeting COVID-19 main protease: A meta-analysis and molecular docking studies, Hippokratia 24 (2020) 99–106.Search in Google Scholar

K. Van Reeth, S. Van Gucht and M. Pensaert, In vivo studies on cytokine involvement during acute viral respiratory disease of swine: Troublesome but rewarding, Vet. Immunol. Immunopathol. 87 (2002) 161–168; https://doi.org/10.1016/s0165-2427(02)00047-810.1016/S0165-2427(02)00047-8Search in Google Scholar

C. Y. Cheung, L. L. Poon, A. S. Lau, W. Luk, Y. L. Lau, K. F. Shortridge, S. Gordon, Y. Guan and J. S. Peiris, Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: A mechanism for the unusual severity of human disease?, Lancet 360 (2002) 1831–1837; https://doi.org/10.1016/s0140-6736(02)11772-710.1016/S0140-6736(02)11772-7Search in Google Scholar

L. Zhang, D. Lin, X. Sun, U. Curth, C. Drosten, L. Sauerhering, S. Becker, X. Rox and R. Hilgenfeld, Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors, Science 368 (2020) 409–412; https://doi.org/10.1126/science.abb340510.1126/science.abb3405716451832198291Search in Google Scholar

R. Hilgenfeld, From SARS to MERS: Crystallographic studies on coronaviral proteases enable antiviral drug design, FEBS J. 281 (2014) 4085–4096; https://doi.org/10.1111/febs.1293610.1111/febs.12936Search in Google Scholar

S. Y. Li, C. Chen, H. Q. Zhang, H. Y. Guo, H. Wang, L. Wang, X. Zhang, S. N. Hua, J. Yu, P. G. Xiao, R. S. Li and X. Tan, Identification of natural compounds with antiviral activities against SARS-associated coronavirus, Antiviral. Res. 67 (2005) 18–23; https://doi.org/10.1016/j.antiviral.2005.02.00710.1016/j.antiviral.2005.02.007Search in Google Scholar

C. C. Wen, Y. H. Kuo, J. T. Jan, P. H. Liang, S. Y. Wang, H. G. Liu, C. K. Lee, S. T. Chang, C. J. Kuo, S. S. Lee, C. C. Hou, P. W. Hsiao, S. C. Chien, L. F. Shyur and N. S. Yang, Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus, J. Med. Chem. 50 (2007) 4087–4095; https://doi.org/10.1021/jm070295s10.1021/jm070295sSearch in Google Scholar

L. T. Lin, W. C. Hsu and C. C. Lin, Antiviral natural products and herbal medicines, J. Tradit. Complement. Med. 4 (2014) 24–35; https://doi.org/10.4103/2225-4110.12433510.4103/2225-4110.124335Search in Google Scholar

T. Pillaiyar, M. Manickam, V. Namasivayam, Y. Hayashi and S. H. Jung, An Overview of severe acute respiratory syndrome-Coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy, J. Med. Chem. 59 (2016) 6595–6628; https://doi.org/10.1021/acs.jmedchem.5b0146110.1021/acs.jmedchem.5b01461Search in Google Scholar

L. Shamseer, D. Moher, M. Clarke, D. Ghersi, A. Liberati, M. Petticrew, P. Shekelle and L. A. Stewart, (PRISMA-P group), Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation, BMJ 350 (2015) Article ID g7647; https://doi.org/10.1136/bmj.g764710.1136/bmj.g7647Search in Google Scholar

W. Yan, K. Ohtani, R. Kasai and K. Yamasaki, Steroidal saponins from fruits of Tribulus terrestris, Phytochemistry 42 (1996) 1417–1422; https://doi.org/10.1016/0031-9422(96)00131-810.1016/0031-9422(96)00131-8Search in Google Scholar

I. Kostova and D. Dinchev, Saponins in Tribulus terrestris – Chemistry and bioactivity, Phytochem. Rev. 4 (2005) 111–137; https://doi.org/10.1007/s11101-005-2833-x10.1007/s11101-005-2833-xSearch in Google Scholar

N. Mulinacci, P. Vignolini, G. la Marca, G. Pieraccini, M. Innocenti and F. F. Vincieri, Food supplements of Tribulus terrestris L.: An HPLC-ESI-MS method for an estimation of the saponin content, Chromatographia 57 (2003) 581–592; https://doi.org/10.1007/BF0249173310.1007/BF02491733Search in Google Scholar

W. Zheng, F. Wang, Y. Zhao, X. Sun, L. Kang, Z. Fan, L. Qiao, R. Yan, S. Liu and B. Ma, Rapid characterization of constituents in Tribulus terrestris from different habitats by UHPLC/Q-TOF MS, J. Am. Soc. Mass Spectrom. 28 (2017) 2302–2318; https://doi.org/10.1007/s13361-017-1761-510.1007/s13361-017-1761-528766114Search in Google Scholar

C. Tian, Z. Zhang, H. Wang, Y. Guo, J. Zhao and M. Liu, Extraction technology, component analysis, and in vitro antioxidant and antibacterial activities of total flavonoids and fatty acids from Tribulus terrestris L. fruits, Biomed. Chromatogr. 33 (2019) e4474; https://doi.org/10.1002/bmc.447410.1002/bmc.447430577068Search in Google Scholar

J. Kaushik, S. Tandon, R. Bhardwaj, T. Kaur, S. K. Singla, J. Kumar and C. Tandon, Delving into the antiurolithiatic potential of Tribulus terrestris extract through – In vivo efficacy and preclinical safety investigations in Wistar rats, Sci. Rep. 9 (2019) Article ID 15969 (13 pages); https://doi.org/10.1038/s41598-019-52398-w10.1038/s41598-019-52398-w682897031685914Search in Google Scholar

Y. H. Song, D. W. Kim, M. J. Curtis-Long, H. J. Yuk, Y. Wang, N. Zhuang, K. H. Lee, K. S. Jeon and K. H. Park, Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits, Biol. Pharm. Bull. 37 (2014) 1021–1028; https://doi.org/10.1248/bpb.b14-0002610.1248/bpb.b14-0002624882413Search in Google Scholar

C. W. Lin, F. J. Tsai, C. H. Tsai, C. C. Lai, L. Wan, T. Y. Ho, C. C. Hsieh and P. D. Chao, Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds, Antiviral Res. 68 (2005) 36–42; https://doi.org/10.1016/j.antiviral.2005.07.00210.1016/j.antiviral.2005.07.002711432116115693Search in Google Scholar

J. Y. Park, J. H. Kim, Y. M. Kim, H. J. Jeong, D. W. Kim, K. H. Park, H. J. Kwon, S. J. Park, W. S. Lee and Y. B. Ryu, Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases, Bioorg. Med. Chem. 20 (2012) 5928–5935; https://doi.org/10.1016/j.bmc.2012.07.03810.1016/j.bmc.2012.07.038712716922884354Search in Google Scholar

W. Luo, X. Su, S. Gong, Y. Qin, W. Liu, J. Li, H. Yu and Q. Xu, Anti-SARS coronavirus 3C-like protease effects of Rheum palmatum L. extracts, Biosci. Trends 3 (2009) 124–126.Search in Google Scholar

J. Y. Park, J. A. Ko, D. W. Kim, Y. M. Kim, H. J. Kwon, H. J. Jeong, C. Y. Kim, K. H. Park, W. S. Lee and Y. B. Ryu, Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV, J. Enzyme Inhib. Med. Chem. 31 (2016) 23–30; https://doi.org/10.3109/14756366.2014.100321510.3109/14756366.2014.100321525683083Search in Google Scholar

J. Y. Park, H. J. Yuk, H. W. Ryu, S. H. Lim, K. S. Kim, K. H. Park, Y. B. Ryu and W. S. Lee, Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors, J. Enzyme Inhib. Med. Chem. 32 (2017) 504–515; http://doi.org/10.1080/14756366.2016.126551910.1080/14756366.2016.1265519601004628112000Search in Google Scholar

Y. B. Ryu, H. J. Jeong, J. H. Kim, Y. M. Kim, J. Y. Park, D. Kim, T. T. Nguyen, S. J. Park, J. S. Chang, K. H. Park, M. C. Rho and W. S. Lee, Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition, Bioorg. Med. Chem. 18 (2010) 7940–7947; https://doi.org/10.1016/j.bmc.2010.09.03510.1016/j.bmc.2010.09.035712630920934345Search in Google Scholar

D. W. Kim, K. H. Seo, M. J. Curtis-Long, K. Y. Oh, J. W. Oh, J. K. Cho, K. H. Lee and K. H. Park, Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia, J. Enzyme Inhib. Med. Chem. 29 (2014) 59–63; https://doi.org/10.3109/14756366.2012.75359110.3109/14756366.2012.75359123323951Search in Google Scholar

J.-Y. Park, H. J. Jeong, J. H. Kim, Y. M. Kim, S.-J. Park, D. Kim, K. H. Park, W. S. Lee and Y. B. Ryu, Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus, Biol. Pharm. Bull. 35 (2012) 2036–2042; https://doi.org/10.1248/bpb.b12-0062310.1248/bpb.b12-0062322971649Search in Google Scholar

B. Ryu, J. Park, M. Kim, Y. Lee, D. Seo, S. Chang, H. Park, C. Rho and S. Lee, SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii, Bioorg. Med. Chem. Lett. 20 (2010) 1873–1876; https://doi.org/10.1016/j.bmcl.2010.01.15210.1016/j.bmcl.2010.01.152Search in Google Scholar

C. N. Chen, C. P. Lin, K. K. Huang, W. C. Chen, H. P. Hsieh, P. H. Liang and J. T. Hsu, Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3,3’-digallate (TF3), Evid. Based Complement. Alternat. Med. 2 (2005) 209–215; https://doi.org/10.1093/ecam/neh08110.1093/ecam/neh081Search in Google Scholar

C. C. Wen, L. F. Shyur, J. T. Jan, P. H. Liang, C. J. Kuo, P. Arulselvan, J. B. Wu, S. C. Kuo and N. S. Yang, Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication, J. Tradit. Complement. Med. 1 (2011) 41–50; https://doi.org/10.1016/s2225-4110(16)30055-410.1016/S2225-4110(16)30055-4Search in Google Scholar

J. K. Cho, M. J. Curtis-Long, K. H. Lee, D. W. Kim, H. W. Ryu, H. J. Yuk and K. H. Park, Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa, Bioorg. Med. Chem. 21 (2013) 3051–3057; https://doi.org/10.1016/j.bmc.2013.03.02710.1016/j.bmc.2013.03.027Search in Google Scholar

G. W. Qin and R. S. Xu. Recent advances on bioactive natural products from Chinese medicinal plants, Med. Res. Rev. 18 (1998) 375–382; https://doi.org/10.1002/(sici)1098-1128(199811)Search in Google Scholar

X. Wu, G. Qin, K. K. Cheung and K. F. Cheng, New alkaloids from Isatis indigotica, Tetrahedron 53 (1997) 13323–13328.10.1016/S0040-4020(97)00846-6Search in Google Scholar

C. Jie, Z. Luo, H. Chen, M. Wang, C. Yan, Z. F. Mao, G. K. Xiao, H. Kurihara, Y. F. Li and R. R. He, Indirubin, a bisindole alkaloid from Isatis indigotica, reduces H1N1 susceptibility in stressed mice by regulating MAVS signaling, Oncotarget 8 (2017) 105615–105629; https://doi.org/10.18632/oncotarget.2235010.18632/oncotarget.22350573966429285277Search in Google Scholar

S. L. Hsuan, S. C. Chang, S. Y. Wang, T. L. Liao, T. T. Jong, M. S. Chien, W. C. Lee, S. S. Chen and J. W. Liao, The cytotoxicity to leukemia cells and antiviral effects of Isatis indigotica extracts on pseudorabies virus, J. Ethnopharmacol. 123 (2009) 61–67; https://doi.org/10.1016/j.jep.2009.02.02810.1016/j.jep.2009.02.028712679319429341Search in Google Scholar

M. Iranshahi, R. Rezaee, H. Parhiz, A. Roohbakhsh and F. Soltani, Protective effects of flavonoids against microbes and toxins: The cases of hesperidin and hesperetin, Life Sci. 137 (2015) 125–132; https://doi.org/10.1016/j.lfs.2015.07.01410.1016/j.lfs.2015.07.01426188593Search in Google Scholar

T. N. Kaul, E. Middleton, Jr. and P. L. Ogra, Antiviral effect of flavonoids on human viruses, J. Med. Virol. 15 (1985) 71–79; https://doi.org/10.1002/jmv.189015011010.1002/jmv.18901501102981979Search in Google Scholar

W. S. Lee, J. R. Kim, J. M. Han, K. C. Jang, D. E. Sok and T. S. Jeong, Antioxidant activities of abietane diterpenoids isolated from Torreya nucifera leaves, J. Agric. Food Chem. 54 (2006) 5369–5374; https://doi.org/10.1021/jf060896c10.1021/jf060896c16848519Search in Google Scholar

K. Bae, The Medicinal Plants of Korea, Kyo-Hak Publishing Co., Seoul 2000, pp. 260.Search in Google Scholar

J. Oh, H. S. Rho, Y. Yang, J. Y. Yoon, J. Lee, Y. D. Hong, H. C. Kim, S. S. Choi, T. W. Kim, S. S. Shin and J. Y. Cho, Extracellular signal-regulated kinase is a direct target of the anti-inflammatory compound amentoflavone derived from Torreya nucifera, Mediators Inflamm. 2013 (2013) Article ID 761506 (11 pages); https://doi.org/10.1155/2013/76150610.1155/2013/761506Search in Google Scholar

S. P. Chen, M. Dong, K. Kita, Q. W. Shi, B. Cong, W. Z. Guo, S. Sugaya, K. Sugita and N. Suzuki, Anti-proliferative and apoptosis-inducible activity of labdane and abietane diterpenoids from the pulp of Torreya nucifera in HeLa cells, Mol. Med. Rep. 3 (2010) 673–678; https://doi.org/10.3892/mmr_0000031510.3892/mmr_00000315Search in Google Scholar

S. H. Kim, J. G. Park, Y. D. Hong, E. Kim, K. S. Baik, D. H. Yoon, S. Kim, M. N. Lee, H. S. Rho, S. S. Shin and J. Y. Cho, Src/Syk/IRAK1-targeted anti-inflammatory action of Torreya nucifera butanol fraction in lipopolysaccharide-activated RAW264.7 cells, J. Ethnopharmacol. 188 (2016) 167–176; https://doi.org/10.1016/j.jep.2016.05.00810.1016/j.jep.2016.05.008Search in Google Scholar

P. G. Latha, D. A. Evans, K. R. Panikkar and K. K. Jayavardhanan, Immunomodulatory and antitumour properties of Psoralea corylifolia seeds, Fitoterapia 71 (2000) 223–231; https://doi.org/10.1016/s0367-326x(99)00151-310.1016/S0367-326X(99)00151-3Search in Google Scholar

J. P. Kotiyal and D. P. Sharma, Phytochemical studies of Psoralea species, Bull. Medico-Ethnobot. Res. 13 (1992) 209–223.Search in Google Scholar

G. Jiangning, W. Xinchu, W. Hou, L. Qinghua and B. Kaishun, Antioxidants from a Chinese medicinal herb Psoralea corylifolia L., Food Chem. 91 (2005) 287–292.10.1016/j.foodchem.2004.04.029Search in Google Scholar

G. Xiao, G. Li, L. Chen, Z. Zhang, J. J. Yin, T. Wu, Z. Cheng, X. Wei and Z. Wang, Isolation of antioxidants from Psoralea corylifolia fruits using high-speed counter-current chromatography guided by thin layer chromatography-antioxidant autographic assay, J. Chromatogr. A 1217 (2010) 5470–5476; https://doi.org/10.1016/j.chroma.2010.06.04110.1016/j.chroma.2010.06.04120663508Search in Google Scholar

S. Yin, C. Q. Fan, Y. Wang, L. Dong and J. M. Yue, Antibacterial prenylflavone derivatives from Psoralea corylifolia, and their structure-activity relationship study, Bioorg. Med. Chem. 12 (2004) 4387–4392; https://doi.org/10.1016/j.bmc.2004.06.01410.1016/j.bmc.2004.06.01415265490Search in Google Scholar

N. A. Khatune, M. E. Islam, M. E. Haque, P. Khondkar and M. M. Rahman, Antibacterial compounds from the seeds of Psoralea corylifolia, Fitoterapia 75 (2004) 228–230; https://doi.org/10.1016/j.fitote.2003.12.01810.1016/j.fitote.2003.12.01815030932Search in Google Scholar

S. Chanda, M. Kaneria and R. Nair, Antibacterial activity of Psoralea corylifolia L. seed and aerial parts with various extraction methods, Res. J. Microbiol. 6 (2011) 124–131; https://doi.org/10.3923/jm.2011.124.13Search in Google Scholar

C. H. Chen, T. L. Hwang, L. C. Chen, T. H. Chang, C. S. Wei and J. J. Chen, Isoflavones and anti--inflammatory constituents from the fruits of Psoralea corylifolia, Phytochemistry 143 (2017) 186–193; https://doi.org/10.1016/j.phytochem.2017.08.00410.1016/j.phytochem.2017.08.00428825980Search in Google Scholar

L. T. Yi, Y. C. Li, Y. Pan, J. M. Li, Q. Xu, S. F. Mo, C. F. Qiao, F. X. Jiang, H. X. Xu, X. B. Lu, L. D. Kong and H. F. Kung, Antidepressant-like effects of psoralidin isolated from the seeds of Psoralea corylifolia in the forced swimming test in mice, Prog. Neuropsychopharmacol. Biol. Psychiatry 32 (2008) 510–519; https://doi.org/10.1016/j.pnpbp.2007.10.00510.1016/j.pnpbp.2007.10.00518006202Search in Google Scholar

N. J. Sun, S. H. Woo, J. M. Cassady and R. M. Snapka, DNA polymerase and topoisomerase II inhibitors from Psoralea corylifolia, J. Nat. Prod. 61 (1998) 362–366; https://doi.org/10.1021/np970488q10.1021/np970488q9544566Search in Google Scholar

C. Cheng, S. Yu-Feng, H. Yang, L. Lei, C. Wei-Chao, W. Gao-Xue and Z. Bin, Highly efficient inhibition of spring viraemia of carp virus replication in vitro mediated by bavachin, a major constituent of Psoralea corylifolia Lynn., Virus Res. 255 (2018) 24–35; https://doi.org/10.1016/j.virusres.2018.06.00210.1016/j.virusres.2018.06.00229913251Search in Google Scholar

C. Cabrera, R. Giménez and M. C. López, Determination of tea components with antioxidant activity, J. Agric. Food Chem. 51 (2003) 4427–4435; https://doi.org/10.1021/jf030080110.1021/jf030080112848521Search in Google Scholar

M. Weerawatanakorn, W. L. Hung, M. H. Pan, S. Li, D. Li, X. Wan and C. T. Ho, Chemistry and health beneficial effects of oolong tea and theasinensins, Food Sci. Hum. Well. 4 (2015) 133–146; https://doi.org/10.1016/J.FSHW.2015.10.00210.1016/j.fshw.2015.10.002Search in Google Scholar

W. C. Reygaert, The antimicrobial possibilities of green tea, Front. Microbiol. 5 (2014) Article ID 434 (8 pages); https://doi.org/10.3389/fmicb.2014.0043410.3389/fmicb.2014.00434413848625191312Search in Google Scholar

M. Friedman, Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas, Mol. Nutr. Food Res. 51 (2007) 116–134; https://doi.org/10.1002/mnfr.20060017310.1002/mnfr.200600173716838617195249Search in Google Scholar

J. M. Song, K. H. Lee and B. L. Seong, Antiviral effect of catechins in green tea on influenza virus, Antiviral Res. 68 (2005) 66–74; https://doi.org/10.1016/j.antiviral.2005.06.01010.1016/j.antiviral.2005.06.01016137775Search in Google Scholar

Z. F. Yang, L. P. Bai, W. B. Huang, X. Z. Li, S. S. Zhao, N. S. Zhong and Z. H. Jiang, Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure-activity relationship analysis, Fitoterapia 93 (2014) 47–53; https://doi.org/10.1016/j.fitote.2013.12.01110.1016/j.fitote.2013.12.01124370660Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo