1. bookVolume 24 (2021): Issue 1 (May 2021)
Journal Details
License
Format
Journal
First Published
06 Sep 2013
Publication timeframe
2 times per year
Languages
English
access type Open Access

Long-term effect of crops and fertilization on soil eco-chemical state

Published Online: 21 May 2021
Page range: 21 - 27
Received: 29 Dec 2020
Accepted: 08 Mar 2021
Journal Details
License
Format
Journal
First Published
06 Sep 2013
Publication timeframe
2 times per year
Languages
English
Abstract

The study on long-term effects of various crops and fertilization practices on soil eco-chemical state was performed in the complex of Planosols at the Warsaw University of Life Sciences – SGGW experimental station in Skierniewice. The study covered three experiments – Ex-1 (established in 1923; no organic fertilization, cereals as a crop), Ex-2 (established in 1992; farmyard manure application every 4 years, cereals as a crop) and Ex-3 (established in 1975; no organic fertilization, blueberries as a crop). Additionally, each experiment covered three mineral fertilization options, including no fertilization, NPK and CaNPK. Soil samples were taken from A-horizons in 2017 and analysed using standard procedures. The results demonstrate considerable influence of crops and fertilization practices on soil eco-chemical state. Both mineral and organic fertilizers positively affected sorptive capacity as compared to control and modified ionic composition of soil sorption complex. Lower exchangeable acidity and higher sum of exchangeable basis and base saturation were noted in fertilized soils and cereals as a crop as compared to controls. Under blueberries there was observed strong acidification of the soil, in particular in combination with NPK fertilizers, as evidenced by the highest exchangeable acidity, hydrolytic acidity, and the lowest base saturation. Liming partially neutralized acidifying effect of blueberries. Fertilization and crops also strongly influenced buffering capacity of the soils. Extremely low ability to neutralize acidic ions was noted in unfertilized soils, whereas the highest at plots fertilized with Ca. The highest ability to neutralize alkaline ions was typical for NPK fertilized soils under blueberries.

Keywords

Bartmiński, P., & Klimowicz, Z. (2008). Właściwości sorpcyjne czarnych ziem Kotliny Sandomierskiej wytworzonych z różnych skał macierzystych. Roczniki Gleboznawcze, 59(3), 7–16. Search in Google Scholar

Bednarek, R., Dziadowiec, H., Pokojska, U., & Prusinkiewicz, Z. (2004). Badania ekologiczno-gleboznawcze. PWN. Search in Google Scholar

Błońska, E., & Januszek, K. (2010). Wpływ składu gatunkowego drzewostanów na aktywność enzymatyczną i właściwości fizykochemiczne gleb leśnych. Roczniki Gleboznawcze, 61(2), 5–14. Search in Google Scholar

Hulugalle, N. R., & Weaver, T. B. (2005). Short-term variations in chemical properties of Vertisols as affected by amounts, carbon/nitrogen ratio, and nutrient concentration of crop residues. Communications in Soil Science and Plant Analysis, 36, 1449–1464. DOI https://doi.org/10.1081/CSS-200058489 Search in Google Scholar

Jaworska, H., Kobierski, M., & Dąbkowska-Naskręt, H. (2008). Kationowa pojemność wymienna i zawartość kationów wymiennych w glebach płowych o zróżnicowanym uziarnieniu. Roczniki Gleboznawcze, 59(1), 84–89. Search in Google Scholar

Kang, J., Hesterberg, D., & Osmond, D. L. (2009). Soil organic matter effects on phosphorus sorption: A path analysis. Soil Science Society of America Journal. 73(2), 360–366. DOI https://doi.org/10.2136/sssaj2008.0113 Search in Google Scholar

Kowalkowski, A. (2002). Wskaźniki ekochemicznego stanu gleb leśnych zagrożonych przez zakwaszenie. Regionalny Monitoring Środowiska Przyrodniczego, 3, 31–43. Search in Google Scholar

Lieb, A. M., Darrouzet-Nardi, A., & Bowman, W. D. (2011). Nitrogen deposition decreases acid buffering capacity of alpine soils in the southern Rocky Mountains. Geoderma, 164, 220–224. DOI https://doi.org/10.1016/j.geoderma.2011.06.013 Search in Google Scholar

Limon-Ortega, A., & Martinez-Cruz, E. (2014). Effects of soil pH on wheat grain yield and quality. Communications in Soil Science and Plant Analysis, 45(5), 581–591. DOI https://doi.org/10.1080/00103624.2013.874018 Search in Google Scholar

Malczyk, P., Kobierski, M., Jaworska, H., & Dąbkowska-Naskręt, H. (2008). Zależność między wybranymi właściwościami gleb i pojemnością buforową w glebach uprawnych regionu Pomorza i Kujaw. Roczniki Gleboznawcze, 59(1), 149–154. Search in Google Scholar

Okołowicz, M. (1996). Właściwości sorpcyjne frakcji granulometrycznych wybranych gleb. Roczniki Gleboznawcze, 47(1/2), 33–46. Search in Google Scholar

Orzechowski, M., Smólczyński, S., & Sowiński, P. (2005). Właściwości sorpcyjne gleb aluwialnych Żuław Wiślanych. Roczniki Gleboznawcze, 56(1/2), 119–127. Search in Google Scholar

PTG. (2009). Klasyfikacja uziarnienia gleb i utworów mineralnych – PTG 2008. Roczniki Gleboznawcze, 60(2), 5–17. Search in Google Scholar

Raczuk, J. (2011). Acidity and buffering properties of soils of the Biała Podlaska Commune. Ochrona Środowiska i Zasobów Naturalnych, 49, 186–192. Search in Google Scholar

Rojas, R., Morillo, J., Usero, J., Delgado-Moreno, L., & Gan, J. (2013). Enhancing soil sorption capacity of an agricultural soil by addition of three different organic wastes. Science of the Total Environment (pp. 458–460, 614–623). DOI 10.1016/j. scitotenv.2013.04.032 Search in Google Scholar

Šimanský, V., Juriga, M., Jonczak, J., Uzarowicz, Ł., & Stępień, W. (2019). How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma, 342, 75–84. DOI https://doi.org/10.1016/j.geoderma.2019.02.020 Search in Google Scholar

Šimanský, V., & Polláková, N. (2014). Soil organic matter and sorption capacity under different soil management practices in a productive vineyard. Archives of Agronomy and Soil Science, 60(8), 1145–1154. DOI https://doi.org/10.1080/03650340.2013.865837 Search in Google Scholar

Thompson, M., L., Zhang, H., Kazemi, M., & Sandor, J. A. (1989). Contribution of organic matter to cation exchange capacity and specific surface area of fractionated soil materials. Soil Science, 148, 250–257. Search in Google Scholar

Ulrich, B. (1981). Ökologische Gruppierung von Böden nach ihrem chemischen Bodenzustand. Zeitschrift für Pflanzenernährung und Bodenkunde, 144, 289–305. Search in Google Scholar

Vang, F. L., & Huang, P. M. (2001). Effects of organic matter on the rate of potassium adsorption by soils. Canadian Journal of Soil Science, 81(3), 325–330. DOI https://doi.org/10.4141/S00-069 Search in Google Scholar

Walenczak, K., Licznar, S. E., & Licznar, M. (2009). The role of organic matter and colloidal clay in forming of buffer properties of soils of the Szczytnicki Park. Soil Science Annual, 60(2), 102–107. Search in Google Scholar

WRB. (2015). World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. FAO. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo