1. bookVolume 19 (2019): Issue 2 (April 2019)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Functioning of the Intestinal Ecosystem: From New Technologies in Microbial Research to Practical Poultry Feeding – A Review

Published Online: 02 May 2019
Volume & Issue: Volume 19 (2019) - Issue 2 (April 2019)
Page range: 239 - 256
Received: 08 Aug 2018
Accepted: 29 Jan 2019
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Unlike classical microbiology which focuses on bacteria capable of growing in vitro, metagenomics is a study of genetic information originating from microflora which aims to characterise the microbiome, namely the common genome of bacteria, archaea, fungi, protozoa and viruses living in the host. Metagenomics relies on next-generation sequencing (NGS), a large-scale sequencing technique which allows millions of sequential reactions to be carried out in parallel to decode entire communities of microorganisms. Metagenomic analyses support taxonomic analyses (involving gene fragments encoding ribosomal RNAs 5S and 16S in bacteria) or functional analyses for identifying genes encoding proteins that participate in the regulation of metabolic pathways in the body. New metagenomics technologies expand our knowledge of the phylogenetic structure of microflora in the gastrointestinal tract of poultry, and they support the identification of previously unknown groups of microbiota, mainly those occurring in small numbers. Next-generation sequencing also provides indirect information about the quantitative structure of the genes of gut microorganisms, but microbial activity and changes in the proportions of microbial metabolites that affect the host’s intestinal integrity and metabolism remain insufficiently investigated. Therefore, research studies are undertaken to investigate the proportions of the key microbial metabolites in the intestinal contents of poultry relative to changes in the population size of the most important bacterial groups, including those determined by cheaper techniques.

Keywords

Apajalahti J., Kettunen A., Grahamh H. (2004). Characteristics of gastrointestinal microbial communities, with special reference to the chicken. World’s Poultry Sci. J., 60: 223–232.Search in Google Scholar

Barko P.C., Mc Michael M.A., Swanson K.S., Williamson D.A. (2018). The gastrointestinal microbiome: A Review. J. Vet. Intern. Med., 32: 9–25.Search in Google Scholar

Bervoets L., Van Hoorenbeeck K., Kortleven I., Van Noten C., Hens N., Vael C., Goossens H., Desager K.N., Vankerckhoven V. (2013). Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog., 5: 10.Search in Google Scholar

Borda-Molina D., Vital M., Sommerfeld V., Rodehutscord M., Camarinha-Silva A. (2016). Insights into broilers’ gut microbiota fed with phosphorus, calcium and phytase supplemented diets. Front. Microbiol., 7: 2033.Search in Google Scholar

Borda-Molina D., Seifert J., Camarinha-Silva A. (2018). Current perspective of the chicken gastrointestinal tract and its microbiome. Comput. Struct. Biotechnol. J., 16: 131–139.Search in Google Scholar

Campanaro S., Treu L., Kougias P.G., de Francisci D., Valle G., Angelidaki I. (2016). Metagenomic analysis and functional characterization of the biogas microbiome using high through-put shotgun sequencing and a novel binning strategy. Biotechnol. Biofuels, 9: 26.Search in Google Scholar

Chistoserdova L. (2009). Functional metagenomics: recent advances and future challenges. Bio- technol. Genet. Eng. Rev., 26: 335–352.Search in Google Scholar

Cho I., Blaser M.J. (2012). The human microbiome: At the interface of health and disease. Nat. Rev. Genet., 13: 260–270.Search in Google Scholar

Choi K.Y., Lee T.K., Sul W.J. (2015). Metagenomic analysis of chicken gut microbiota for improving metabolism and health of chickens – a review. Asian-Australas. J. Anim. Sci., 28: 1217–1225.Search in Google Scholar

Clavijo V., Florez M.J.V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Sci., 97: 1006–1021.Search in Google Scholar

Cole J.R., Wang Q., Fish J.A., Chai B., Mc Garrell D.M., Sun Y., Brown T., Porras-Alfaro A., Kuske C.R., Tiedje J.M. (2014). Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res., 42: D633–D642.Search in Google Scholar

Cruaud R., Vigneron A., Lucchetti-Miganeh C., Ciron P.E., Godfroy A., Cambon-Bonavita M.A. (2014). Influence of DNA extraction method, 16S rRNA targeted hypervariable regions, and sample origin on microbial diversity detected by 454 pyrosequencing in marine chemo-synthetic ecosystems. Appl. Environ. Microbiol., 80: 4626–4639.Search in Google Scholar

Danzeisen J.L., Kim H.B., Isaacson R.E., Tu Z.J., Johnson T.J. (2011). Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS One, 6: e27949.Search in Google Scholar

De Cesare A., Sirri F., Manfreda G., Moniaci P., Giardini A., Zampiga M., Meluzzi A. (2017). Effect of dietary supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) on caecum microbiome and productive performance in broiler chickens. PloS One, 12: e0176309.Search in Google Scholar

De Maesschalck C., Eeckhaut V., Maertens L., De Lange L., Marchal L., Nezer C., De Baere S., Croubels S., Daube G., Dewulf J., Haesebrouck F., Ducatelle R., Taminau B., Van Immerseel F. (2015). Effects of xylo-oligosaccharides on broiler chicken performance and microbiota. J. Appl. Environ. Microbiol., 81: 5880–5888.Search in Google Scholar

Den Besten G., van Eunen K., Groen A.K., Venema K., Reijngoud D-J., Bakker B.M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res., 54: 2325–234.Search in Google Scholar

Deusch S., Tilocca B., Camarinha-Silva A., Seifert J. (2015). News in livestock research – Use of omics-technologies to study the microbiota in the gastrointestinal tract of farm animals. Comput. Struct. Biotechnol. J., 13: 55–63.Search in Google Scholar

Ding J., Zhao L., Wang L., Zhao W., Zhai Z., Leng L., Wang Y., He C., Zhang Y., Zhang H., Li H., Meng H. (2016). Divergent selection-induced obesity alters the composition and functional pathways of chicken gut microbiota. Genet. Select. Evol., 48: 93.Search in Google Scholar

Ducatelle R., Goossens E., De Meyer F., Eeckhaut V., Antonissen G., Haeseb-rouck F., Van Immerseel F. (2018). Biomarkers for monitoring intestinal health in poultry: present status and future perspectives. Vet. Res., 849: 43.Search in Google Scholar

Handelsman J., Rondon M.R., Brady S.F., Clardy J., Goodman R.M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol., 5: R245–R249.Search in Google Scholar

Hang J., Desai V., Zavajevski N., Yang Y., Lin X., Satya R.V., Martinez L.J., Blaylock J.M., Jarman R.G., Thomas S.J., Kuschner R.A. (2014). 16S rRNA gene pyrosequencing of reference and clinical samples and investigation of the temperature stability of microbiome profiles. Microbiome, 2: 31.Search in Google Scholar

Hooper L.V., Gordon J.I. (2001). Commensal host-bacterial relationships in the gut. Science, 292: 1115–1118.Search in Google Scholar

Hou Q., Kwok L.Y., Zheng Y., Wang L., Guo Z., Zhang J., Huang W., Wang Y., Leng L., Li H., Zhang H. (2016). Differential fecal microbiota are retained in broiler chicken lines divergently selected for fatness traits. Sci. Rep., 6: 37376.Search in Google Scholar

Hume M.E. (2011). Historic perspective: Probiotics, prebiotics, and other alternatives to antibiotics. Poultry Sci., 90: 2663–2669.Search in Google Scholar

Huyghebaert G., Ducatelle R., van Immerseel F. (2011). An update on alternatives to antimicrobial growth promoters for broilers. Vet. J., 187: 182–188.Search in Google Scholar

Jankowski J., Zduńczyk Z., Mikulski D., Przybylska-Gornowicz B., Sosnowska E., Juśkiewicz J. (2013). Effect of whole wheat feeding on gastrointestinal tract development and performance of growing turkeys. Anim. Feed Sci. Technol., 185: 150–159.Search in Google Scholar

Jumpertz R., Le D.S., Turnbaugh P.J., Trinidad C., Bogardus C., Gordon J.J., Krakoff J. (2011). Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr., 94: 58–65.Search in Google Scholar

Kers J.G., Velkers F.C., Fischer E.A., Hermes G.D., Stegman J.A., Smidt H. (2018). Host and environmental factors affecting the intestinal microbiota in chickens. Front. Microbiol., 9: 235.Search in Google Scholar

Kunin V., Engelbrektson A., Ochman H., Hugenholtz P. (2010). Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol., 12: 118–123.Search in Google Scholar

Lee K-C., Kil D.Y., Sul W.J. (2017). Cecal microbiome divergence of broiler chickens by sex and body weight. J. Microbiol., 55: 939–945.Search in Google Scholar

Liu L., Li Y., Li S., Hu N., He Y., Pong R., Lin D., Lu L., Law M. (2012). Comparison of next-generation sequencing systems. BioMed Res. Int., 2012: 251364.Search in Google Scholar

Lu J., Idris U., Harmon B., Hofacre C., Maurer J.I., Lee M.D. (2003). Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl. Environ. Microbiol., 69: 6816–6824.Search in Google Scholar

Marchesi J.R., Ravel J. (2015). The vocabulary of microbiome research: a proposal. Microbiome, 3: 31.Search in Google Scholar

Meyer A., Todt C., Mikkelsen N.T., Lieb B. (2010). Fast evolving 18S rRNA sequences from Solenogastres (Mollusca) resist standard PCR amplification and give new insights into mollusk substitution rate heterogeneity. BMC Evol. Biol., 10: 70.Search in Google Scholar

Mignon-Grasteau S., Narcy A., Rideau N., Chantry-Darmon C., Boscher M-Y., Sellier N., Chabault M., Konsak-Ilievski B., Le Bihan-Duval E., Gabriel I. (2015). Impact of selection for digestive efficiency on microbiota composition in the chicken. PLOS One, 10: e0135488.Search in Google Scholar

Millet S., van Oeckel M.J., Aluwé M., Delezie E., De Brabander D.L. (2010). Prediction of in vivo short-chain fatty acid production in hindgut fermenting mammals: problems and pitfalls. Crit. Rev. Food Sci. Nutr., 50: 605–619.Search in Google Scholar

Mohinudeen C., Joe M.M., Benson A., Tongmin S. (2017). An overview of Next-Generation Sequencing (NGS) technologies to study the molecular diversity of genome. Microbial Applications, 1: 295–317.Search in Google Scholar

Nielsen H.B., Almeida M., Juncker A.S., Rasmussen S., Li J., Sunagawa S., etal. (2014). Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol., 32: 822–828.Search in Google Scholar

Oakley B.B., Lillehoj H.S., Kogut M.H., Kim W.K., Pedroso M.A., Lee M.D., Collett S.R., Johnson T.J., Cox N.A. (2014). The chicken gastrointestinal microbiome. FEMS Microbiol. Lett., 360: 100–112.Search in Google Scholar

Olnood C.G., Beski S.S.M., Iji P.A., Choct.M. (2015). Delivery routes for probiotics. Effects on broiler performance, intestinal morphology and gut microflora. Anim. Nutr., 1: 192–202.Search in Google Scholar

Pan D., Yu Z. (2014). Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes, 5: 108–119.Search in Google Scholar

Qu A., Brulc J.M., Wilson M.K., Law B.F., Theoret J.R., Joens L.A., Konkel M.E., Angly F., Dinsdale E.A., Edwards R.A., Nelson K.E., White B.A. (2008). Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One, 3: e2945.Search in Google Scholar

Ranjitkar S., Lawley B., Tannock G., Engberg R.M. (2016). Bacterial succession in the broiler gastrointestinal tract. Appl. Environ. Microb., 82: 2399–2410.Search in Google Scholar

Rehman H., Vahjen W., Awad W.A., Zentek J. (2007). Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Arch. Anim. Nutr., 6: 319–335.Search in Google Scholar

Rougière N., Malbert C.H., Rideau N., Cognié J., Carré B. (2002). Comparison of gizzard activity between chickens from genetic D+ and D-lines selected for divergent digestion efficiency. Poultry Sci., 91: 460–467.Search in Google Scholar

Ruiz R., Peinado M.J., Aranda-Olmedo I., Abecia L., Suarez-Pereira E., Ortiz Mel-let C., Garcia Fernandez J.M., Rubio L.A. (2015). Effect of feed additives on ileal mucosa-associated microbiota composition of broiler chickens. J. Anim. Sci., 93: 3410–3420.Search in Google Scholar

Salanitro J.P., Fairchilds I.G., Zgornicki Y.D. (1974). Isolation, culture characteristics, and identification of anaerobic bacteria from the chicken cecum. Appl. Microbiol., 27: 678–687.Search in Google Scholar

Schloss P.D., Handelsman J. (2003). Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol., 14: 303–310.Search in Google Scholar

Scholz M.B., Lo C.C., Chain P.S. (2012). Next generation sequencing and bioinformatic bottle-necks: the current state of metagenomic data analysis. Curr. Opin. Biotech., 23: 9–15.Search in Google Scholar

Sergeant M.J., Constantinidou C., Cogan T.A., Bedford M.R., Penn C.W., Pallen M.J. (2014). Extensive microbial and functional diversity within the chicken cecal microbiome. PloS One, 9: e91941.Search in Google Scholar

Sharpton T.J. (2014). An introduction to the analysis of shotgun metabolomic data. Front. Plant Sci., 209: 1–14.Search in Google Scholar

Siegerstetter S-C., Petri R.M., Magowan E., Lawlor P.G., Zebeli Q., O’Connel N.E., Metzler-Zebeli B.U. (2018). Feed restriction modulates the fecal microbiota composition, nutrient retention, and feed efficiency in chicken divergent in residual feed intake. Front. Mibrobiol. 9: 2698.Search in Google Scholar

Singh K.M., Shah T.M., Reddy B., Deshpande S., Rank D.N., Joshi C.G. (2014). Taxonomic and gene-centric metagenomics of the fecal microbiome of low and high feed conversion ratio (FCR) broilers. J. Appl. Genet., 55: 145–154.Search in Google Scholar

Sitnicka D., Figurska K., Orzechowski S. (2010). Functional analysis of genes. Adv. Cell Biol., 2: 1–16.Search in Google Scholar

Song J., Xiao K., Ke Y.L., Jiao L.F., Hu C.H., Diao Q.Y., Shi B., Zou X.T. (2014). Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poultry Sci., 93: 581–588.Search in Google Scholar

Stanley D., Geier M.S., Hughes R.J., Denman S.E., Moore R.J. (2013). Highly variable microbiota development in the chicken gastrointestinal tract. PLoS One, 8: e84290.Search in Google Scholar

Stanley D., Hughes R.J., Moore R.J. (2014). Microbiota of the chickens gastrointestinal tract: Influence on health, productivity and disease. Appl. Microbiol. Biotechnol., 98: 4301–4310.Search in Google Scholar

Thomas T., Gilbert J., Meyer F. (2012). Metogenomics – A quide from sampling to data analysis. Microb. Inform. Exp., 2: 3.Search in Google Scholar

Tillman G.E., Haas G.J., Wise M.G., Oakley B., Smith M.A., Siragusa G.R. (2011). Chicken intestine microbiota following the administration of lupulone, a hop-based antimicrobial. FEMS Microbiol. Ecol., 77: 395–403.Search in Google Scholar

Torok V.A., Ophei K., Loo M., Hughes R.J. (2008). Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Appl. Environ. Microbiol., 74: 783–791.Search in Google Scholar

Torok V.A., Hughes R.J., Mikkelsen L.L., Perez-Maldonado R., Balding K,Macal-pine R., Percy N.J., Ophel-Keller K. (2011). Identification and characterization of potential performance-related gut microbiotas in broiler chickens across various feeding trials. Appl. Environ. Microbiol., 77: 5868–5878.Search in Google Scholar

Tremaroli V., Bäckhed F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature, 489: 242.Search in Google Scholar

Turnbaugh P.J., Ley R.E., Hamady M., Fraser-Liggett C.M., Knight R.Gordon J.I. (2007). The human microbiome project. Nature, 449: 804–810.Search in Google Scholar

Vincent A.T., Derome N., Boyle B., Culley A.I., Charette S.J. (2017). Next-generation sequencing (NGS) in the microbiological world: how to make the most of your money. J. Microbiol. Meth., 138: 60–71.Search in Google Scholar

Walugembe M., Rothschild M.F., Persia M.E. (2014). Effects of high fiber ingredients on the performance, metabolizable energy and fiber digestibility of broiler and layer chicks. Anim. Feed Sci. Tech., 188: 46–52.Search in Google Scholar

Wang W-L., Xu S-Y., Ren Z-G., Tao L., Jiang J-W., Zheng S-S. (2015). Application of metagenomics in the human gut microbiome. World J. Gastroentero., 21: 803–814.Search in Google Scholar

Wei S., Morrison M., Yu Z. (2013). Bacterial census of poultry intestinal microbiome. Poultry Sci., 92: 671–683.Search in Google Scholar

Wilkinson T.J., Cowan A.A., Vallin H.E., Onime L.A., Oyama L.B., Cameron S.L., Gonot C., Moorby J.M., Waddams K., Theobald V.J., Leemans D., Bowra S., Nixey C., Huws S.A. (2017). Characterization of the microbiome along the gastrointestinal tract of growing turkeys. Front Microbiol., 8: 1089; doi: 10.3389/fmicb.2017.01089. eCollection 2017.10.3389/fmicb.2017.01089547988628690591Search in Google Scholar

Willems O.W., Miller S.P., Wood B.J. (2013). Aspects of selection for feed efficiency in meat producing poultry. World’s Poultry Sci. J., 69: 77–88.Search in Google Scholar

Yao C.K., Muir J.G., Gibson P.R. (2016). Review article: insights into colonic protein fermentation, its modulation and potential health implications. Aliment Pharmacol. Ther., 43: 181–196.Search in Google Scholar

Yeoman C.J., Cjia N., Jeraldo P., Sipos M., Goldenfield N., White B.A. (2012). The microbiome of the chicken gastrointestinal tract. An. Health Res. Rev., 13: 89–99.Search in Google Scholar

Zduńczyk Z., Jankowski J., Mikulski D., Przybylska-Gornowicz B., Sosnows-ka E., Juśkiewicz J. (2013). Gastrointestinal morphology and function in turkeys fed diets diluted with whole grain wheat. Poultry Sci., 92: 1799–1811.Search in Google Scholar

Zduńczyk Z., Jankowski J., Rutkowski A., Sosnowska E., Drażbo A., Juśkiewicz J. (2014). The composition and enzymatic activity of gut microbiota in laying hens fed diets supplemented with blue lupine seeds. Anim. Feed Sci. Technol., 191: 57–66.Search in Google Scholar

Zduńczyk Z., Jankowski J., Kaczmarek S., Juśkiewicz J. (2015). Determinants and effects of postileal fermentation in broilers and turkeys part 1: Gut microbiota composition and its modulation by feed additives. World’s Poultry Sci. J., 71: 37–47.Search in Google Scholar

Zduńczyk Z., Krawczyk M., Mikulski D., Jankowski J., Przybylska-Gornowicz B., Juśkiewicz J. (2016). Beneficial effects of increasing dietary levels of yellow lupine (Lupinus luteus) seed meal on productivity parameters and gastrointestinal tract physiology in eight-week-old turkeys. Anim. Feed Sci. Technol., 211: 189–198.Search in Google Scholar

Zduńczyk Z., Mikulski D., Jankowski J., Przybylska-Gornowicz B., Sosnowska E., Juśkiewicz J., Słomiński B.A. (2018). Effects of dietary inclusion of high- and low- tannin faba bean (Vicia faba L.) seeds on microbiota, histology and fermentation processes of the gastrointestinal tract in finisher turkeys. Anim. Feed Sci. Technol., 240: 184–196.Search in Google Scholar

Zhao L., Wang G., Siegel P., He C., Wang H., Zhao W., Zhai Z., Tian F., Ahao J., Zhang H., Sun Z., Chen W., Zhang Y., Meng H. (2013). Quantitative genetic background of the host influences gut microbiomes in chickens. Sci. Rep., 3: 1–6.Search in Google Scholar

Zhao P.Y., Li H.L., Mohammadi M., Kim H. (2016). Effect of dietary lactulose supplementation on growth performance, nutrient digestibility, meat quality, relative organ weight, and excreta microflora in broilers. Poultry Sci., 95: 84–89.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo