1. bookVolume 21 (2021): Issue 4 (October 2021)
Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Freeze Drying as a Method of Long-Term Conservation of Mammalian Semen – A Review

Published Online: 28 Oct 2021
Page range: 1209 - 1234
Received: 13 Jul 2020
Accepted: 11 Dec 2020
Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

With the development of biotechnological methods that allow the manipulation and free exchange of genetic material, the methods for collecting and storing such material need to be improved. To date, freezing in liquid nitrogen has allowed the storage of cells and entire plant and animal tissues for practically unlimited times. However, alternatives are still being sought to eliminate the constant need to maintain samples at a low temperature. Lyophilization or freeze drying is an alternative to standard freezing procedures. The storage of samples (lyophilisates) does not require specialised equipment but only refines the preservation method itself. In the case of cells capable of movement e.g., sperm, they lose the ability to reach the oocyte in vivo and for in vitro fertilization (IVF) because of the lyophilization process. However, freeze-dried sperm may be used for in vitro fertilization by intracytoplasmic sperm injection (ICSI), based on the results obtained in cleavage, embryo development and the production of live born offspring after embryo transfer. Studies on the lyophilization of sperm have been performed on many animal species, both in the laboratory and in livestock. This conservation method is considered to create biobanks for genetically valuable and endangered species with the simultaneous application of ICSI. This review article aimed to present the issues of the freeze-drying process of mammalian semen and help find solutions that will improve this technique of the long-term preservation of biological material.

Keywords

Abdalla H., Hirabayashi M., Hochi S. (2009). The ability of freeze-dried bull spermatozoa to induce calcium oscillations and resumption of meiosis. Theriogenology, 71: 543–552.Search in Google Scholar

Anzalone D. A., Palazzesea L., Iusoa D., Martinob G., Loia P. (2018). Freeze-dried spermatozoa: An alternative biobanking option for endangered species. Anim. Reprod. Sci., 190: 85–93.Search in Google Scholar

Arav A., Idda A., Nieddu S. M., Natan Y., Ledda S. (2018). High post-thaw survival of ram sperm after partial freeze-drying. J. Assist. Reprod. Genet., 35: 1149–1155.Search in Google Scholar

Benedict M. (1905). The determination of water in foods and physiological preparations. Arn. J. Physiol., 13: 309–329.Search in Google Scholar

Bhowmick S., Zhu L., Mc Ginnis L., Lawitts J., Nath B. D., Toner M., Biggers J. (2003). Desiccation tolerance of spermatozoa dried at ambient temperature: Production of fetal mice. Biol. Reprod., 68: 1179–1786.Search in Google Scholar

Bialy G., Smith V. R. (1957). Freeze-drying of bovine spermatozoa. J. Dairy Sci., 40: 739–745.Search in Google Scholar

Choi Y. H., Varner D. D., Love C. C., Hartman D. L., Hinrichs K. (2011). Production of live foals via intracytoplasmic injection of lyophilized sperm and sperm extract in the horse. Reproduction, 142: 529–538.Search in Google Scholar

Czarny N. A., Harris M. S., De Iuliis G. N., Rodger J. C. (2009). Acrosomal integrity, viability, and DNA damage of sperm from dasyurid marsupials after freezing or freeze drying. Theriogenology, 72: 817–825.Search in Google Scholar

Domingo P., Olacireguia M., Gonzáleza N., De Blasb I., Gila L. (2018). Long-term preservation of freeze-dried rabbit sperm by adding rosmarinic acid and different chelating agents. Cryobiology, 81: 174–177.Search in Google Scholar

Dos Santos Morais M. L. G., de Brito D. C. C., Pinto Y., Silva L. M., Vizcarra D. M., Silva R. F., Cibin F. W. S., Campello C. C., Alves B. G., Araújo V. R., Pinto F. Ch., Pessoa O. D. L., Figueiredo J. R., Rodrigues A. P. R. (2019). Natural antioxidants in the vitrification solution improve the ovine ovarian tissue preservation. Reprod. Biol., 19: 270–278.Search in Google Scholar

Elliott G. D., Lee P-Ch., Paramore E., van Vorst M., Comizzoli P. (2015). Resilience of oocyte germinal vesicles to microwave-assisted drying in the domestic cat model. Biopreserv. Biobank, 13: 164–171.Search in Google Scholar

Flosdorf E. W., Mudd S. (1935). Procedure and apparatus for preservation in “lyophile” form of serum and other biological substances. J. Immunol., 29: 389–425.Search in Google Scholar

Gajda B., Rajska I. (2014). Current and potential use of cryopreservation of farm animal embryos and oocytes (in Polish). Rocz. Nauk. PTZ, 10: 1–23.Search in Google Scholar

Gajda B., Katska-Ksiazkiewicz L., Ryńska B., Bochenek M., Smorag Z. (2007). Survival of bovine fibroblasts and cumulus cells after vitrification. Cryo Letters, 28: 271–279.Search in Google Scholar

Gajda B., Romek M., Grad I., Krzysztofowicz E., Bryla M., Smorag Z. (2011). Lipid content and cryotolerance of porcine embryos cultured with phenazine ethosulfate. Cryo Letters, 32: 349–357.Search in Google Scholar

Gajda B., Skrzypczak-Zielińska M., Gawrońska B., Słomski R., Smorąg Z. (2015). Successful production of piglets derived from mature oocytes vitrified using OPS method. Cryo Letters, 36: 8–18.Search in Google Scholar

Gajda L., Cegła M., Rajska I., Gajda B. (2019). Effect of media on the DNA integrity of freeze-dried boar spermatozoa: preliminary study. Proc. 5th Winter Workshop of The Society for Biology of Reproduction, Zakopane, Poland, 13–15.02.2019, p.110.Search in Google Scholar

Garcia A., Gil L., Malo C., Martinez F., Kershaw-Young C., de Blas I. (2014). Effect of different disaccharides on the integrity and fertilising ability of freeze-dried boar spermatozoa: a preliminary study. Cryoletters, 35: 277–285.Search in Google Scholar

Hammer B. W. (1911). A note on the vacuum desiccation of bacteria. J. Med. Res., 24: 527–530.Search in Google Scholar

Hara H., Abdalla H., Morita H, Kuwayama M., Hirabayashi M., Hochi S. (2011). Procedure for bovine ICSI, not sperm freeze-drying, impairs the function of the microtubule-organizing center. J. Reprod. Dev., 57: 428–432.Search in Google Scholar

Hara H., Tagiri M., Hwang I. -S., Takahashi M., Hirabayashi M., Hochi S. (2014). Adverse effect of cake collapse on the functional integrity of freeze-dried bull spermatozoa. Cryobiology, 68: 354–360.Search in Google Scholar

Hirabayashi M., Kato M., Ito J., Hochi S. (2005). Viable offspring derived from oocytes intracytoplasmically injected with freeze-dried sperm heads. Zygote, 13: 79–85.Search in Google Scholar

Hirabayashi M., Kato M., Ito J., Hochi S. (2007). Viable rat offspring derived from oocytes intracytoplasmically injected with freeze-dried sperm heads. Zygote, 13: 79–85.Search in Google Scholar

Hochi S., Watanabe K., Kato M., Hirabayashi M. (2008). Live rats resulting from injection of oocytes with spermatozoa freeze-dried and stored for one year. Mol. Reprod. Dev., 75: 890–894.Search in Google Scholar

Holt W. V. (2000). Fundamental aspects of sperm cryobiology: the importance of species and individual differences. Theriogenology, 53: 47–58.Search in Google Scholar

Hongxia L., Haixia C., Xingping G., Huaixiu W. (2018). Cryovial monolayer vitrification for ovarian tissue cryopreservation. Cell Tissue Bank, 19: 149–154.Search in Google Scholar

Ito D., Wakayama S., Kamada Y., Shibasaki I., Kamimura S., Ooga M., Wakayama T. (2019). Effect of trehalose on the preservation of freeze-dried mice spermatozoa at room temperature. J. Reprod. Dev., 65: 353–359.Search in Google Scholar

Kamada Y., Wakayama S., Shibasaki I., Ito D., Kamimura S., Ooga M., Wakayama T. (2018). Assessing the tolerance to room temperature and viability of freeze-dried mice spermatozoa over long term storage at room temperature under vacuum. Sci. Rep., 8: 10602.Search in Google Scholar

Kaneko T. (2015). Simple sperm preservation by freeze-drying for conserving animal strains. Method. Mol. Cell. Biol., 1239: 317–329.Search in Google Scholar

Kaneko T., Nakagata N. (2005). Relation between storage temperature and fertilizing ability of freeze-dried mouse spermatozoa. Comparative Med., 55: 140–144.Search in Google Scholar

Kaneko T., Serikawa T. (2012). Successful long-term preservation of rat sperm by freeze-drying. PLoS One, 7: 35043.Search in Google Scholar

Kaneko T., Whittingham D. G., Yanagimachi R. (2003). Effect of pH value of freeze-drying solution on the chromosome integrity and developmental ability of mouse spermatozoa. Biol. Reprod., 68: 136–139.Search in Google Scholar

Kaneko T., Kimura S., Nakagata N. (2007). Offspring derived from oocytes injected with rat sperm, frozen or freeze-dried without cryoprotection. Theriogenology, 68: 1017–1021.Search in Google Scholar

Kaneko T., Kimura S., Nakagata N. (2009). Importance of primary culture conditions for the development of rat ICSI embryos and long-term preservation of freeze-dried sperm. Cryobiology, 58: 293–297.Search in Google Scholar

Kaneko T., Ito H., Sakamoto H., Onuma M., Inoue-Murayama M. (2014). Sperm preservation by freeze-drying for the conservation of wild animals. PLoS One, 9: e113381.Search in Google Scholar

Kasai M., Mukaida T. (2004). Cryopreservation of animal and human embryos. Reprod. Biomed. Online, 9: 164–170.Search in Google Scholar

Kawase Y., Suzuki H. (2011). Study on freeze-drying as a method of preserving mouse sperm. J. Reprod. Dev., 57: 176–182.Search in Google Scholar

Kawase Y., Araya H., Kamada N., Jishage K. (2005). Possibility of long-term preservation of freeze-dried mouse spermatozoa. Biol. Reprod., 72: 568–573.Search in Google Scholar

Kawase Y., Hani Y., Kamada N., Jishage K., Suzuki H. (2007 a). Effect of pressure at primary drying of freeze-drying mouse sperm reproduction ability and preservation potential. Reproduction, 133: 841–846.Search in Google Scholar

Kawase Y., Tachibe T., Jishage K-I., Suzuki H. (2007 b). Transportation of freeze-dried mouse spermatozoa under different preservation conditions. J. Reprod. Dev., 53: 1169–1174.Search in Google Scholar

Kawase Y., Wada N. A., Jishage K. (2009). Evaluation of DNA fragmentation of freeze-dried mouse sperm using a modified sperm chromatin structure assay. Theriogenology, 72: 1047–1053.Search in Google Scholar

Keskintepe L., Pacholczyk G., Machnicka A., Norris K., Akif Curuk M., Khan I., Brackett B. G. (2002). Bovine blastocyst development from oocytes injected with freeze-dried spermatozoa. Biol. Reprod., 67: 409–415.Search in Google Scholar

Kusakabe H. (2019). Production of mouse fetuses using spermatozoa exposed temporarily to high temperature or continuously to room temperature after freeze-drying in Na+-free/K+-rich EGTA buffer. Cryobiology, 87: 105–109.Search in Google Scholar

Kusakabe H., Tateno H. (2011). Characterization of chromosomal damage accumulated in freezedried mouse spermatozoa preserved under ambient and heat stress conditions. Mutagenesis, 26: 447–453.Search in Google Scholar

Kusakabe H., Tateno H. (2017). Prevention of high-temperature-induced chromosome damage in mouse spermatozoa freeze-dried using Ca2+ chelator-containing buffer alkalinized with NaOH or KOH. Cryobiology, 79: 71–77.Search in Google Scholar

Kusakabe H., Szczygiel M. A., Whittingham D. G., Yanagimachi R. (2001). Maintenance of genetic integrity in frozen and freeze-dried mouse spermatozoa. Proc. Natl. Acad. Sci. U.S.A., 98: 13501–13506.Search in Google Scholar

Kwon I. K., Park K. E., Niwa K. (2004). Activation, pronuclear formation, and development in vitro of pig oocytes following intracytoplasmic injection of freeze-dried spermatozoa. Biol. Reprod., 71: 1430–1436.Search in Google Scholar

Lee P-Ch., Adams D. M., Amelkina O., White K. K., Amoretti L. A., Whitaker M. G., Comizzoli P. (2019). Influence of microwave-assisted dehydration on morphological integrity and viability of cat ovarian tissues: First steps toward long-term preservation of complex biomaterials at supra-zero temperatures. PLoS One, 14: 1–23.Search in Google Scholar

Li X. X., Diao Y. F., Wei H. J., Wang S. Y., Cao X. Y., Zhang Y. F., Chang T., Li D. L., Kim M. K., Xu B. (2017). Tauroursodeoxycholic acid enhances the development of porcine embryos derived from in vitro-matured oocytes and evaporatively dried spermatozoa. Sci. Rep., 7: 6773.Search in Google Scholar

Liu J. L., Kusakabe H., Chang Ch. Ch., Suzuki H., Schmidt D. W., Julian M., Pfeffer R., Bormann Ch. L., Cindy Tian X., Yanagimachi R., Yang X. (2004). Freeze-dried sperm fertilization leads to full-term development in rabbits. Biol. Reprod., 70: 1776–1781.Search in Google Scholar

Liu J., Lee G. Y., Lawitts J. A., Toner M., Biggers J. D. (2014). Live pups from evaporatively dried mouse sperm stored at ambient temperature for up to 2 years. PLoS One, 9: 1–7.Search in Google Scholar

Loi P., Matsukawa K., Ptak G., Clinton M., Fulka J., Nathan Y., Arav A. (2008). Freeze-dried somatic cells direct embryonic development after nuclear transfer. PLoS One, 8: 1–6.Search in Google Scholar

Martins C. F., Báo S. N., Dode M. N., Correa G. A., Rumpf R. (2007 a). Effects of freezedrying on cytology, ultrastructure, DNA fragmentation, and fertilizing ability of bovine sperm. Theriogenology, 67: 1307–1315.Search in Google Scholar

Martins C. F., Dode M. N., Báo S. N., Rumpf R. (2007 b). The use of the acridine orange test and the TUNEL assay to assess the integrity of freeze-dried bovine spermatozoa DNA. Genet. Mol. Res., 6: 94–104.Search in Google Scholar

Men N. T., Kikuchi K., Nakai M., Fukuda A., Tanihara F., Noguchi J., Kaneko H., Linh N. V., Nguyen B. X., Nagai T., Tajima A. (2013). Effect of trehalose on DNA integrity of freeze-dried boar sperm, fertilization, and embryo development after intracytoplasmic sperm injection. Theriogenology, 80: 1033–1044.Search in Google Scholar

Men N. T., Kikuchi K., Furusawa T., Dang-Nguyen T. Q., Nakai M., Fukuda A., Junko N., Kaneko H., Viet L. N., Nguyen B. X., Tajima A. (2016). Expression of DNA repair genes in porcine oocytes before and after fertilization by ICSI using freeze-dried sperm. Anim. Sci. J., 87: 1325–1333.Search in Google Scholar

Mercati F., Domingo P., Pasquariello R., Dall ’ Aglio C., Di Michele A., Forti K., Cocci P., Boiti C., Gil L., Zerani M., Maranesi M. (2019). Effect of chelating and antioxidant agents on morphology and DNA methylation in freeze-drying rabbit (Oryctolagus uniculus) spermatozoa. Reprod. Domest. Anim., 55: 29–37.Search in Google Scholar

Muneto T., Horiuchi T. (2011). Full-term development of hamster embryos produced by injecting freeze-dried spermatozoa into oocytes. J. Mamm. Ova. Res., 28: 32–39.Search in Google Scholar

Nakagawa Y., Kaneko T. (2019). Rapid and efficient production of genome-edited animals by electroporation into oocytes injected with frozen or freeze-dried sperm. Cryobiology, 90: 71–74.Search in Google Scholar

Nakai M., Kashiwazaki N., Takizawa A., Maedomari N., Ozawa M., Noguchi J., Kaneko H., Shino M., Kikuchi K. (2007). Effects of chelating agents during freeze-drying of boar spermatozoa on DNA fragmentation and on developmental ability in vitro and in vivo after intracytoplasmic sperm head injection. Zygote, 15: 15–24.Search in Google Scholar

Narbutt O., Dąbrowski H. P., Dąbrowska G. (2017). The process of freeze-drying, its wide applications and defense mechanisms against dehydratation (in Polish). Ed. Biol. Środ., 2: 20–29.Search in Google Scholar

Olaciregui M., Gil L., Luño V., Jerez R. A., Gonzalez N. (2014). Use of rosmarinic acid as antioxidant on boar sperm freeze-drying. Reprod. Domest. Anim., 49: 105.Search in Google Scholar

Olaciregui M., Luño V., Gonzalez N., De Blas I., Gil L. (2015). Freeze-dried dog sperm: Dynamics of DNA integrity. Cryobiology, 71: 286–290.Search in Google Scholar

Olaciregui M., Luño V., Martí J. I., Aramayona J., Gil L. (2016). Freeze-dried stallion spermatozoa: evaluation of two chelating agents and comparative analysis of three sperm DNA damage assays. Andrologia, 48: 900–906.Search in Google Scholar

Olaciregui M., Luño V., Domingo P., González N., Gil L. (2017 a). In vitro developmental ability of ovine oocytes following intracytoplasmic injection with freeze-dried spermatozoa. Sci. Rep., 24: 1096.Search in Google Scholar

Olaciregui M., Luño V., Domingo P., González N., de Blas I., Gil L. (2017 b). Chelating agents in combination with rosmarinic acid for boar sperm freeze-drying. Reprod. Biol., 17: 193–198.Search in Google Scholar

Oldenhof H., Zhang M., Narten K., Bigalk J., Sydykov B., Wolkers W. F., Sieme H. (2017). Freezing-induced uptake of disaccharides for preservation of chromatin in freeze-dried stallion sperm during accelerated aging. Biol. Reprod., 97: 892–901.Search in Google Scholar

Palazzese L., Gosálvez J., Anzalone D. A., Loi P., Saragusty J. (2018). DNA fragmentation in epididymal freeze-dried ram spermatozoa impairs embryo development. J. Reprod. Dev., 64: 393–400.Search in Google Scholar

Patrizio P., Loi L., Arav A. (2012). Lyophilization and rehydration of bovine oocytes after vitrification: a new technological breakthrough. Fertil. Steril., 23: 46.Search in Google Scholar

Polge C., Smith A. U., Parkes A. S. (1949). Revival of spermatozoa after vitrification and dehydration at low temperature. Nature, 164: 666–667.Search in Google Scholar

Rajska I. (2015). Intra-cytoplasmic sperm injection (ICSI) as an alternative to standard in vitro fertilization in pigs (in Polish). Rocz. Nauk. PTZ, 11: 55–66.Search in Google Scholar

Ramirez J. S., Cañizares J. (2003). Deshidratacion de la papa mediante liofilización atmosferica. Ecuador: Escuela de Ingenierıa Quimica, Universidad Central Del Ecuador, Escuela De Ingeniería Química, Quito-Ecuador.Search in Google Scholar

Restrepo G., Varela E., Duque J. E., Gómez J. E., Rojas M. (2019). Freezing, vitrification, and freeze-drying of equine spermatozoa: impact on mitochondrial membrane potential, lipid peroxidation and DNA integrity. J. Equine Vet. Sci., 72: 8–15.Search in Google Scholar

Ringleb J., Waurich R., Wibbelt G., Streich W. J., Jewgenow K. (2011). Prolonged storage of epididymal spermatozoa does not affect their capacity to fertilise in vitro-matured domestic cat (Felis catus) oocytes when using ICSI. Reprod. Fert. Develop., 23: 818–825.Search in Google Scholar

Saragusty J., Arav A. (2011). Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction, 141: 1–19.Search in Google Scholar

Shackell L. F. (1909). An improved method of desiccation, with some applications to biological problems. Arn. J. Physiol., 20: 325–340.Search in Google Scholar

Sherman J. K. (1954). Freezing and freeze-drying of human spermatozoa. Fertil. Steril., 5: 357–371.Search in Google Scholar

Silva H. V. R., da Silva A. M., Lee P-Ch., Brito B. F., Silva A. R., da Silva L. D., Comizzoli P. (2020). Influence of microwave-assisted drying on structural integrity and viability of testicular tissues from adult and prepubertal domestic cats. Biopreserv. Biobank, 18: 415–424.Search in Google Scholar

Wakayama T., Yanagimachi R. (1998). Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat. Biotechnol., 16: 639–641.Search in Google Scholar

Wakayama S., Kamada Y., Yamanaka K., Kohda T., Suzuki H., Shimazu T., Motoki N. T., Ikuko O., Nagamatsu A., Kamimura S., Nagatomo H., Mizutani E., Ishino F., Yano S., Wakayama T. (2017). Healthy offspring from freeze-dried mouse spermatozoa held on the International Space Station for 9 months. Proc. Natl. Acad. Sci. U.S.A., 114: 5988–5993.Search in Google Scholar

Wakayama S., Ito D., Kamada Y., Yonemura S., Ooga M., Kishigami S., Wakayama T. (2019). Tolerance of the freeze-dried mouse sperm nucleus to temperatures ranging from −196°C to 150°C. Sci. Rep., 9: 1–9.Search in Google Scholar

Ward M. A., Kaneko T., Kusakabe H., Biggers J. D., Whittingham D. G., Yanagimachi R. (2003). Long-term preservation of mouse spermatozoa after freeze-drying and freezing without cryoprotection. Biol. Reprod., 69: 2100–2108.Search in Google Scholar

Watanabe H., Asano T., Abe Y., Fukui Y., Suzuki H. (2009). Pronuclear formation of freezedried canine spermatozoa microinjected into mouse oocytes. J. Assist. Reprod. Genet., 26: 531–536.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo