1. bookVolume 21 (2021): Issue 4 (October 2021)
Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Effects of Addition of Exogenous Fibrolytic Enzymes on Digestibility and Milk and Meat Production – A Systematic Review

Published Online: 28 Oct 2021
Page range: 1159 - 1192
Received: 21 Sep 2020
Accepted: 08 Jan 2021
Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Exogenous fibrolytic enzymes (EFE) added to the ruminant diet can increase fiber digestibility and production efficiency. A systematic review was conducted to understand the interactions between EFE and diet on digestibility and animal performance. The database included variables from 384 experiments with EFE and 264 controls from 85 papers published since 2000 (classification criteria: 1) type of study (in vitro, in situ, in vivo), 2) type of ruminants (sheep, buffaloes, goats, beef and dairy cattle), 3) primary EFE activity (cellulases (Cel) or xylanases (Xyl)), 4) forage proportion (FP), 5) type of plant (TP: legumes or grasses), 6) number of ingredients in diets, and 7) application time (AT)). In over 52.85% of cases, EFE improved the degradability of dry matter (DMD), neutral and acid detergent fiber (NDFD and ADFD), in vitro gas production (GP), volatile fatty acids (VFA), the acetate: propionate ratio (A:P ratio), protein and fat milk, milk yield and average daily gain (ADG) (by 7.78–21.85%). Cel improved organic matter degradability (OMD), GP, VFA, milk yield, and milk protein and fat content. EFE in FP≥40% diets enhanced the ADG, and in grassbased diets increased the dry matter intake (DMI). The AT of EFE affected the DMD, NDFD, and ADFD. Significant correlations were found between the improvements of NDFD or ADFD with DMD (r>0.59), milk yield (r=0.64), and ADG (r=0.59). In conclusion, many factors interact with EFE supplementation effects, but EFE consistently enhanced the DMD, NDFD, and ADFD of ruminant diets, which are related to improvements in productive performance.

Keywords

Almaraz I., Segundo-González S., Pinos-Rodríguez J. M., Miranda L. A. (2010). Effects of exogenous fibrolytic enzymes on in sacco and in vitro degradation of diets and on growth performance of lambs. Ital. J. Anim. Sci., 9: 6–10.Search in Google Scholar

Alsersy H., Salem A. Z. M., Borhami E., Olivarles J., Gado H. M., Mariezcurrena M. D., Yacuot M. H., Kholif A., El-Adawi M., Hermández S. (2015). Effect of Mediterranean saltbush (Atripelx halimus) ensiling with two developed enzyme cocktails on feed intake, nutrient digestibility and ruminal fermentation sheep. Anim. Sci. J., 86: 51–58.Search in Google Scholar

Álvarez G., Pinos-Rodríguez J. M., Herrera J. G., García J. C., González S. S., Bárcena R. (2009). Effects of exogenous fibrolytic enzymes on ruminal digestibility in steers fed high fiber rations. Livest. Sci., 121: 150–154.Search in Google Scholar

Arriola K. G., Kim S. C., Staples C. R., Adesogan A. T. (2011). Effect of fibrolytic enzyme application to low- and high- concentrate diets on the performance of lactating dairy cattle. J. Dairy Sci., 94: 832–841.Search in Google Scholar

Arriola K. G., Oliveira A. S., Ma Z. X., Giurcanu M. C., Adesogan A. T. (2017). A metaanalysis on the effect of dietary application of exogenous fibrolytic enzymes on the performance of dairy cows. J. Dairy Sci., 100: 4513–4527.Search in Google Scholar

Assoumaya C., Boval M., Weisbecker J. L., Saminadin G., Archiméde H. (2007). Limits of exogenous fibrolytic enzymes to improve digestion intake of a tropical grass. Asian-Austral. J. Anim. Sci., 20: 914–919.Search in Google Scholar

Avellaneda-Cevallos J. H., González-Muñoz S. S., Pinos-Rodríguez J. M., Hernández-Garay A., Montañez-Valdez O. D., Ayala J. (2007). Enzimas fibrolíticas exógenas en la digestibilidad in vitro de cinco ecotipos de Brachiaria. Agron. Mesoamericana, 18: 11–17.Search in Google Scholar

Avellaneda-Cevallos J. H., Pinos-Rodríguez J. M., González-Muñoz S. S., Bárcena R., Hernández-Garay A., Montañez-Valdez O. (2009). Effects of exogenous fibrolytic enzymes on ruminal fermentation and digestion of Guinea grass hay. Anim. Feed Sci. Technol., 149: 70–77.Search in Google Scholar

Awawdeh M. S, Obeidat B. S. (2011). Effect of supplemental exogenous enzymes on performance finishing Awassi lambs fed olive cake-containing diets. Livest. Sci., 138: 20–24.Search in Google Scholar

Baah J., Shelfrod J. A., Hristov A. N., Mc Allister T. A., Cheng K. J. (2005). Effects of Tween 80 and fibrolytic enzymes on ruminal fermentation and digestibility of feeds in Holstein cows. Asian-Austral. J. Anim. Sci., 18: 816–824.Search in Google Scholar

Bala P., Malik R., Srinivas B. (2009). Effect of fortifying concentrate supplement with fibrolytic enzymes on nutrient utilization, milk yield and composition in lactating goats. Anim. Sci. J., 80: 265–272.Search in Google Scholar

Balci F., Dikmen S., Gencoglu H., Orman A., Turkmen I. I., Biricik H. (2007). The effect of fibrolytic exogenous enzyme on fattening performance of steers. Bulga. J. Vet. Med., 10: 113–118.Search in Google Scholar

Bassiouni M. I., Gaafar H. M., Saleh M. S., Mohi El Din A. M., Elshora M. A. (2011). Evaluation of rations supplemented with fibrolytic enzyme on dairy cows performance 2. In situ ruminal degradability of rations containing different roughages at two concentrate to roughage ratios. Researcher, 3: 21–33.Search in Google Scholar

Beauchemin K. A., Colombatto D., Morgavi D. P., Yang W. Z. (2003). Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J. Anim. Sci., 81: E37–E47.Search in Google Scholar

Beauchemin K., Kreuzer M., O ´Mara F. O., Mc Allister T. A. (2008). Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric., 48: 21–27.Search in Google Scholar

Bilik K., Niwinska B., Lopuszanska-Rusek M. (2009). Effect of adding fibrolytic enzymes to periparturient and early lactation dairy cow diets on production parameters. Ann. Anim. Sci., 9: 401–413.Search in Google Scholar

Boonthep K., Ngampongsai W., Wattanachant C., Visessanguan W., Boonpayung S. (2011). Effects of enzyme levels in total mixed ration containing oil palm frond silage on kinetics of gas production. J. SAADC, 3: 563–567.Search in Google Scholar

Bowman G. R., Beauchemin K. A., Shelford J. A. (2002). In vitro degradation of fresh substrates treated with exogenous fibrolytic enzymes. Can. J. Anim. Sci., 82: 611–615.Search in Google Scholar

Cano A. L., Aranda I. E., Mendoza M. G., Pérez P. J., Ramos J. J. (2003). Comportamiento de toretes en pastos tropicales suplementados con caña de azúcar y enzimas fibrolíticas. Téc. Pecu. Méx., 41: 151–164.Search in Google Scholar

Carreón L., Pinos-Rodríguez J. M., Bárcena S. S., Mendoza G. (2010). Influence of fibrolytic enzymes on ruminal disappearance and fermentation in steers fed diets with short and long particle length of forage. Ital. J. Anim. Sci., 9: 83–87.Search in Google Scholar

Chaji M., Mohammadabadi T. (2010). The effect of low temperature steam, sodium hydroxide and exogenous enzyme on in vitro degradation of rice straw by rumen bacteria of sheep. In. J. Small Rumin., 16: 190–194.Search in Google Scholar

Chung Y. H., Zhou M., Holtshausen L., Alexander T. W., Mc Allister T. A., Guan L. L., Oba M., Beauchemin K. A. (2012). A fibrolytic enzyme additive for lactating Holstein cow diets: ruminal fermentation, rumen microbial populations, and enteric methane emissions. J. Dairy Sci., 95: 1419–1427.Search in Google Scholar

Colombatto D., Beauchemin K. A. (2003). A proposed methodology to standardize the determination of enzymic activities present in enzyme additives used in ruminant diets. Can. J. Animal Sci., 83: 559–568.Search in Google Scholar

Colombatto M., Morgavi D. P., Furtado A. F., Beauchemin K. A. (2003 a). Screening of exogenous enzymes for ruminant diets: relationship between biochemical characteristics and in vitro ruminal degradation. J. Anim. Sci., 81: 2628–2638.Search in Google Scholar

Colombatto D., Mould F. L., Bhat M. K., Morgavi D. P., Beauchemin K. A., Owen E. (2003 b). Influence of fibrolytic enzymes on the hydrolysis and fermentation of pure cellulose and xylan by mixed ruminal microorganisms in vitro. J. Anim. Sci., 81: 1040–1050.Search in Google Scholar

Colombatto D., Mould F. L., Bhat M. K., Owen E. (2006). Influence of exogenous fibrolytic enzyme level and incubation pH on the in vitro ruminal fermentation of alfalfa stems. Anim. Feed Sci. Technol., 137: 150–162.Search in Google Scholar

Cruywagen C. W., Zyl W. H. (2007). Effects of a fungal enzyme cocktail treatment of high and low forage diets on lamb growth. Anim. Feed Sci. Technol., 145: 151–158.Search in Google Scholar

De Souza M. A., Figueiredo V. P., Berchielli T. T., Nunes P. I., Soares G. J. (2006). Eficiëncia de síntese microbiana e atividade enzimática em bovinos submetidos à suplementação com enzimas fibrolíticas. Rev. Bras. Zootec., 35: 1194–1200.Search in Google Scholar

De Souza M. A., Figueiredo V. P., Teresinha B. T., Nunes P. I. (2008)). Degradacao ruminal da silagem de milho e da palha de arroz utilizando enzimas fibrolíticas exógenas. Maringá, 30: 435–442.Search in Google Scholar

Dean D. B., Adesogan A. T., Krueger N. A., Littell R. C. (2008). Effects of treatment with ammonia or fibrolytic enzymes on chemical composition and ruminal degradability of hays produced from tropical grasses. Anim. Feed Sci. Technol., 145: 68–83.Search in Google Scholar

Dehghani M. R., Weisberjg M. R., Hvelplund T., Kristensen N. B. (2012). Effect of enzyme addition to forage at ensiling on silage chemical composition and NDF degradation characteristics. Livest. Sci., 150: 51–58.Search in Google Scholar

Díaz A., Ranilla M. J., Giraldo L. A., Tejido M. L., Carro M. D. (2015) Treatment of tropical forages with exogenous fibrolytic enzymes: Effects on chemical composition and in vitro rumen fermentation. J. Anim. Phys. Anim. Nutr., 99: 345–355.Search in Google Scholar

Elghandour M. M. Y., Kholif A. E., Hermández J., Mariezcurrena M. D., López S., Camacho L. M., Márquez O., Salem A. Z. M. (2016). Influence of the addition of exogenous xylanase with or without pre-incubation on the in vitro ruminal fermentation of three fibrous feeds. Czech. J. Anim. Sci., 61: 262–272.Search in Google Scholar

Elwakeel E. A., Titgemeyer E. C., Johnson B. J., Armendariz C. K., Shirley J. E. (2007). Fibrolytic enzymes to increase the nutritive value of dairy feedstuffs. J. Dairy Sci., 90: 5226–5236.Search in Google Scholar

Eun J. S., Beauchemin K. A. (2007 a). Enhancing in vitro degradation of alfalfa hay and corn silage using feed enzymes. J. Dairy Sci., 90: 2839–2851.Search in Google Scholar

Eun J. S., Beauchemin K. A. (2007 b). Assessment of the efficacy of varying experimental exogenous fibrolytic enzymes using in vitro fermentation characteristics. Anim. Feed. Sci. Technol., 132: 298–315.Search in Google Scholar

Eun J. S., Beuchemin K. A. (2008). Assessment of the potential of feed enzyme additives to enhance utilization of corn silage fiber by ruminants. Can. J. Anim. Sci., 88: 97–106.Search in Google Scholar

Eun J. S., Beauchemin K. A., Hong S. H., Bauer M. W. (2006). Exogenous enzymes added to untreated or ammoniated rice straw: Effects on in vitro fermentation characteristics and degradability. Anim. Feed Sci. Technol., 131: 86–101.Search in Google Scholar

Eun J. S., Beauchemin K. A., Schluze H. (2007 a). Use of exogenous fibrolytic enzymes to enhance in vitro fermentation of alfalfa hay and corn silage. J. Dairy Sci., 90: 1440–1451.Search in Google Scholar

Eun J. S., Beauchemin K. A., Schluze H. (2007 b). Use of an in vitro fermentation bioassay to evaluate improvements in degradation of alfalfa hay due to exogenous feed enzymes. Anim. Feed Sci. Technol., 135: 315–328.Search in Google Scholar

Facchini F. D. A., Reis V. R. A., Roth A. P., Magalhaes K. A. (2012). Peixoto-Nogueira SC, Casagrande DR, Reis RA, Polizeli ML. Effects of Aspergillus spp. exogenous fibrolytic enzymes on in vitro fermentation of tropical forages. J. Food Agric., 92: 2569–2573.Search in Google Scholar

Flores C., Caja G., Casals R., Albanell E., Such X. (2008). Performance of dairy ewes fed diets with a fibrolytic enzyme product included in the concentrate during the suckling period. Animal, 2: 962–968.Search in Google Scholar

Franco G. L., Ferreira R. F., Rocha M. T., Cysneiros C. S., Diogo J. M. (2008). Parametros ruminaris e desaparecimiento da matéria seca e fibra em detergente neutro da forragem em bovinos que recebendo levadura e enzimas fibrolíticas na dieta. Rev. Bras. Saúde Prod. Anim., 9: 488–496.Search in Google Scholar

Gado H. M., Salem A. Z. M., Robinson P. H., Hassan M. (2009). Influence of exogenous en zymes on nutrient digestibility extent of ruminal fermentation as well as milk production and composition in dairy cows. Anim. Feed Sci. Technol., 154: 36–46.Search in Google Scholar

Gado H. M., Salem A. Z. M., Odongo N. E., Borhami B. E. (2011). Influence of exogenous enzymes ensiled with orange pulp on digestion and growth performance in lambs. Anim. Feed Sci. Technol., 165: 131–136.Search in Google Scholar

Gado H. M., Almustafa S. S., Salem A. Z., Khalil F. A., Abdalla E. B. (2014). Influence of vitamins and exogenous enzymes combination on alleviating heat stress in lactating ewes under Egyptian summer conditions. Anim. Nutr. Feed Tech., 14: 195–203.Search in Google Scholar

Gado H. M., Elghandur M. M. Y., Cipriano M., Odongo N. E., Salem A. Z. M. (2017). Rumen degradation and nutritive utilization of wheat straw, corn stalks and sugarcane bagasse ensiled with multienzymes. J. Appl. Anim. Res., 45: 485–489.Search in Google Scholar

Gallardo I., Bárcena R., Pinos-Rodríguez J. M., Cobos M., Carreón L., Ortega M. E. (2010). Influence of exogenous fibrolytic enzymes on in vitro and in sacco degradation of forages for ruminants. Italian J. Anim. Sci., 9: 34–38.Search in Google Scholar

Giraldo L. A., Carro M. D., Ranilla M. J., Tejido M. L. (2007 a). Influence of fibrolytic enzymes on in vitro methane production and rumen fermentation of a substrate containing 60% grass hay. Lives. Res. Rural Develop., 19: 185.Search in Google Scholar

Giraldo L. A., Ranilla M. J., Tejido M. L., Carro M. D. (2007 b). Influence of exogenous fibrolytic enzymes and fumarate on methane production, microbial growth and fermentation in Rusitec fermenters. British J. Nutr., 8: 753–761.Search in Google Scholar

Giraldo L. A., Carro M. D., Ranilla M. J., Tejido M. L., Mohamed A. H. (2007 c). In vitro ruminal fermentation of low-quality forages as influenced by the treatment with exogenous fibrolytic enzymes. Options Mediterranées A, 74: 263–267.Search in Google Scholar

Giraldo L. A., Tejido M. L., Ranilla M. J., Carro M. D. (2008 a). Effects of exogenous fibrolytic enzymes on in vitro ruminal fermentation of substrates with different forage: concentrate ratios. Anim. Feed Sci. Technol., 141: 306–325.Search in Google Scholar

Giraldo L. A., Tejido M. L., Ranilla M. J., Ramos S., Carro M. D. (2008 b). Influence of direct-fed fibrolytic enzymes on diet digestibility and ruminal activity in sheep fed as grass haybased diet. J. Anim. Sci., 86: 1617–1623.Search in Google Scholar

Gómez-Vázquez A., Mendonza-Martínez G., Pinos-Rodríguez J. (2011 a). Comparison of in vitro degradation of elephant grass and sugarcane by exogenous fibrolytic enzymes. Afr. J. Microbiol. Res., 5: 3051–3053.Search in Google Scholar

Gómez-Vázquez A., Mendonza-Martínez G., Aranda E., Pérez J., Hernández A., Pinos-Rodríguez J. M. (2011 b). Influence of fibrolytic enzymes on growth performance and digestion in steers grazing stargrass and supplemented with fermented sugarcane. J. Appl. Anim. Res., 39: 77–79.Search in Google Scholar

Granzin B. C. (2005). Effects of a fibrolytic enzyme supplement on the performance of Holstein Friesian cows grazing kikuyu. Trop. Grasslands, 39: 112–116.Search in Google Scholar

Guerra L. J. E., Ibarra L. E., Soto A. L. E., Hernández M. J. J. R., Corrales A. J. L., Rodríguez G. J., López J. L. A., Córdova-Izquierdo A. (2007). Alfalfa ruminal degradation using xylanases. J. Anim. Vet. Adv., 6: 1443–1445.Search in Google Scholar

Hatfield R., Fukushima R. S. (2005). Can lignin be accurately measured? Crop. Sci., 45: 832–839.Search in Google Scholar

Hernández A., Kholif A. E., Lugo-Coyote R., Elghandour M. M. Y., Cipriano M., Rodríguez G. B., Odongo N. E., Salem A. Z. M. (2017 a). The effect of garlic oil, xylanase enzyme and yeast on biomethane and carbon dioxide production from 60-d old Holstein dairy calves fed a high concentrate diet. J. Clean. Prod., 148: 616–623.Search in Google Scholar

Hernández A., Kholif A. E., Elghandour M. M. Y., Camacho L. M., Cipriano M. M., Salem A. Z. M., Cruz H., Ugbogu E. A. (2017 b). Effectiveness of xylanase and Saccharomyces cerevisiae as feed additives on gas emissions from agricultural calf farms. J. Clean. Prod., 148: 616–623.Search in Google Scholar

Holtshausen L., Chung Y. H., Gerardo-Cuervo H., Oba M., Beauchemin K. A. (2011). Improved milk production efficiency in early lactation dairy cattle with dietary addition of a developmental fibrolytic enzyme additive. J. Dairy Sci., 94: 899–907.Search in Google Scholar

Hong S. H., Lee B. K., Choi N. J., Lee S. S., Yung G., Ha J. K. (2003). Effects of enzyme application method and levels and pre-treatment times on rumen fermentation, nutrient degradation and digestion in goats and steers. Asian-Aust. J. Anim. Sci., 16: 389–393.Search in Google Scholar

Hristov A. N., Mc Allister T. A., Cheng K. J. (2000). Intraruminal supplementation with increasing levels of exogenous polysaccharide-degrading enzymes: Effects on nutrient digestion in cattle barley grain diet. J. Anim. Sci., 78: 477–487.Search in Google Scholar

Hristov A. N., Basel C. E., Melgar A., Foley A. E., Ropp J. K., Hunt C. W., Tricarico J. M. (2008). Effect of exogenous polysaccharide-degrading enzyme preparations on ruminal fermentation and digestibility of nutrients in dairy cows. Anim. Feed Sci. Technol., 145: 182–193.Search in Google Scholar

Hwang H. I., Hee L. C., Woo K. S., Guyn S. H., Young L. S., Sill L. S., Hong H., Kwak Y., Ha J. K. (2008). Effects of mixtures of Tween 80 and cellulolytic enzymes on nutrient digestion and cellulolytic bacterial adhesion. Asian-Austral. J. Anim. Sci., 21: 1604–1609.Search in Google Scholar

Jami E., Mizrahi I. (2012). Composition and similarity of bovine microbiota across individual animals. Plos One, 7(3): e33306.Search in Google Scholar

Jewell K. A., Mc Cormik C. A., Odt C. L., Weimer P. J., Suen G. (2015). Ruminal bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency. Appl. Environ. Microbiol., 81: 4697–4710.Search in Google Scholar

Jililvand G., Naserian A., Kebreab E., Odongo N. E., Valizadeh R., Eftekhar F., López S., France J. (2008). Rumen degradation kinetics of alfalfa hay, maize silage and wheat straw treated with fibrolytic enzymes. Arch. Zootec., 57: 155–164.Search in Google Scholar

Jung H. G., Casler M. D. (2006 a). Maize stem tissues: Cell wall concentration and composition during development. Crop Sci., 46: 1793–1800.Search in Google Scholar

Jung H. G., Casler M. D. (2006 b). Maize stem tissues: Impact of development on cell wall degradability. Crop Sci., 46: 1801–1809.Search in Google Scholar

Kalkan M., Filya I. (2011). Effects of cellulase enzyme on nutritive value, in vitro digestion characteristics and microbial biomass production on wheat straw. Kafkas Univ. Vet. Fak. Derg., 17: 585–594.Search in Google Scholar

Kholif A. E., Khattab H. M., El-Shewy A. A., Salem A. Z. M., Kholif A. M., El-Sayed M. M., Gado H. M., Mariezcurrena M. D. (2014). Nutrient digestibility, ruminal fermentation activities, serum parameters and milk production and composition of lactating goats fed diets containing rice straw treated with Pleurotus ostreatus. Asian-Austral. J. Anim. Sci., 27: 357–364.Search in Google Scholar

Kholif A. E., Elghandour M. M. Y., Rodríguez G. B., Olafadehan O. A., Salem A. Z. M. (2017) Anaerobic ensiling of raw agricultural waste with a fibrolytic enzyme cocktails as cleaner and sustainable biological product. J. Clean. Prod., 142: 2649–2655.Search in Google Scholar

Knapp J. R., Laur G. L., Vadas P. A., Weiss W. P., Tricarico J.M., (2014). Invited review: enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. J. Dairy Sci., 97: 3231–3261.Search in Google Scholar

Knowlton K. F., Taylor M. S., Hill S. R., Cobb S. R., Wilston K. F. (2007). Manure nutrient excretion by lactating cows fed exogenous phytase and cellulase. J. Dairy Sci., 90: 4356–4360.Search in Google Scholar

Kozelov L. K., Iliev F., Hirstov A. N., Zaman S., Mc Allister T. A. (2008). Effect of fibrolytic enzymes and an inoculant on in vitro degradability and gas production of low-dry matter alfalfa silage. J. Sci. Food Agric., 88: 2568–2575.Search in Google Scholar

Krueger N. A., Adesogan A. T. (2008). Effects of different mixtures of fibrolytic enzymes on digestion and fermentation of bahiagrass hay. Anim. Feed Sci. Technol., 145: 84–94.Search in Google Scholar

Lee H. J., Jung J. Y., Oh Y. K., Lee S. K., Madsen E. L., Jeon C. O. (2012). Comparative survey of rumen microbial communities and metabolites across one caprine and three bovine groups, using bar-coded pyrosequencing and 1H Nuclear Magnetic Resonance Spectoscopy. App. Environ. Microbiol., 78: 5983–5993.Search in Google Scholar

Li M., Penner G. B., Hernández-Sanabria E., Oba M., Guan L. L. (2009). Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J. Appl. Micrbiol., 107: 1924–1934.Search in Google Scholar

Li F., Thomas C. A., Chen Y., Creevey C. J., Guan L. L. (2019). Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its association with feed efficiency in beef cattle. Microbiome, 7: 1–21.Search in Google Scholar

López-Aguirre D., Hernández-Meléndez J., Rojo R., Sánchez-Dávila F., López-Villalobos N., Salem A. Z. M., Vázquez-Armijo F., Ruíz S. (2016 a). Effects of exogenous enzymes and application method on nutrient intake, digestibility and growth performance of Pelibuey lambs. Springer Plus, 5:1399.Search in Google Scholar

López-Aguirre D., Hernández-Meléndez J., Rojo R., Sánchez-Dávila F., López-Villalobos N., Salem A. Z. M., Vázquez-Armijo F., Ruíz S., Joaquin S. (2016 b). In vitro gas production kinetics and degradability of a diet for growing lambs: effect of fibrolytic enzyme products at different dose levels. It. J. Anim. Sci., 15: 453–460.Search in Google Scholar

Lopuszanska-Rusek M., Bilik K. (2011). Influence of pre and postpartum supplementation of fibrolytic enzymes and yeast culture, or both, on performance and metabolic status of dairy cows. Ann. Anim. Sci., 11: 531–545.Search in Google Scholar

Malik R., Bandla S. (2010). Effect of source and dose of probiotics and exogenous fibrolytic enzymes (EFE) on intake, feed efficiency, and growth of male buffalo (Bubalus bubalis) calves. Trop. Anim. Health Prod., 42: 1253–1269.Search in Google Scholar

Márquez A., Mendoza G., Pinos-Rodríguez J. M., Zavaleta H., González S., Buntinx S., Loera O., Meneses M. (2009). Effect of fibrolytic enzymes and incubation pH on in vitro degradation of NDF extracts of alfalfa and orchardgrass. It. J. Anim. Sci., 8: 221–230.Search in Google Scholar

Mc Allister T. A., Stanford K., Bae H. D., Treacher R. J., Hristov A. N., Baah J., Shelford J. A., Cheng K. J. (2000). Effect of surfactant and exogenous enzymes on digestibility of feed and on growth performance and carcass traits of lambs. Can. J. Anim. Sci., 80: 35–44.Search in Google Scholar

Miller D. R., Elliot R., Norton B. W. (2008 a). Effects of an exogenous enzyme, Roxazyme G2 liquid, on digestion and utilization of barley and sorghum grain-based diets by ewe lambs. Anim. Feed Sci. Technol., 140: 90–109.Search in Google Scholar

Miller D. R., Elliott R., Norton B. W. (2008 b). Effects of an exogenous enzyme, Roxazyme G2, on intake, digestion and utilization of sorghum and barley grain-based diets by beef steers. Anim. Feed Sci. Technol., 145: 159–181.Search in Google Scholar

Miller D. R., Granzin B. C., Elliot R., Norton B. W. (2008 c). Effect of an exogenous enzyme Roxazyme G2 liquid, on milk production in pasture fed dairy cows. Anim. Feed Sci. Technol., 145: 194–208.Search in Google Scholar

Miranda-Romero L. A., Tirado-González D. N., Tirado-Estrada G., Améndola-Massiotti R., Sandoval-González L., Ramírez-Valverde R., Salem A. Z. M. (2020). Quantifying non-fibrous carbohydrates, acid detergent fiber and cellulose of forage through an in vitro gas production technique. J. Sci. Food Agr., 100: 3099–3110.Search in Google Scholar

Moharrery A., Hvelplund T., Weisbjerg M. R. (2009). Effect of forage type, harvesting time and exogenous enzyme application on degradation characteristics measured using in vitro technique. Anim. Feed Sci. Technol., 153: 178–192.Search in Google Scholar

Moher D., Liberati A., Tetzlaff J., Altman D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med., 6: e1000097.Search in Google Scholar

Morgavi D. P., Kelly W. J., Janssen P. H., Attwood G. T. (2013). Rumen microbial (meta) genomics and its application to ruminant production. Animal, 7:194–201.Search in Google Scholar

Morsy T. A., Kholif A. E., Kholif S. M., Kholif A. M., Sun X., Salem A. Z. M. (2016). Effects of two enzyme feed additives on digestion and milk production in lactating Egyptian buffaloes. Ann. Anim. Sci., 16: 209–222.Search in Google Scholar

Muwalla M. M., Haddad S. G., Hijazeen M. A. (2007). Effect of fibrolytic enzyme inclusion in high concentrate fattening diets on nutrient digestibility and growth performance of Awassi lambs. Livest. Sci., 11: 255–258.Search in Google Scholar

Nsereko V. L., Beauchemin K. A., Morgavi D. P., Rode L. M., Furtado A. F., Mc Allister T. A., Iwaasa A. D., Yang W. Z., Wang Y. (2002). Effect of a fibrolytic enzyme preparation from Trichoderma longibrachiatum on the rumen microbial population of dairy cows. Can. J. Microbiol., 48: 14–20.Search in Google Scholar

Oba M., Allen M. (1999). Evaluation of the importance of the digestibility of NDF from forage: Effects on dry matter intake and milk yield of dairy cows. J. Dairy Sci., 82: 589–596.Search in Google Scholar

Oba M., Allen M. (2000 a). Effects of brown midrib 3 mutation in corn silage on productivity of dairy cows fed two concentrations of dietary neutral detergent fiber. 1. Feeding behavior and nutrient utilization. J. Dairy Sci., 83: 1333–1341.Search in Google Scholar

Oba M., Allen M. (2000 b). Effects of brown midrib 3 mutation in corn silage on productivity of dairy cows fed two concentrations of dietary neutral detergent fiber. 2. Digestibility and microbial efficiency. J. Dairy Sci., 83: 1350–1358.Search in Google Scholar

Oba M., Allen M. (2005). In vitro digestibility of forages. Proc. Tri-State Dairy Nutrition Conference. Dep. Dairy Sci. The Ohio State University, Columbus, Ohio, 43210, pp. 81–91.Search in Google Scholar

Petri R. M., Forster R. J., Yang W., Mc Kinnon J. J., Mc Allister T. A. (2012). Characterization of rumen bacterial diversity and fermentation parameters in concentrate fed cattle with and without forage. J. App. Microbiol., 112: 1152–1162.Search in Google Scholar

Pinos-Rodríguez J. M., González M. S. S., Mendoza M. G., Bárcena G. R., Cobos P. M. (2001). Efecto de enzimas fibrolíticas glucosiladas en la digestibilidad in vitro de la MS y MO de alfalfa (Medicago sativa) y ballico (Lolium perenne). Rev. Científica FCV-LUZ, 11: 505–509.Search in Google Scholar

Pinos-Rodríguez J. M., González M. S. S., Mendoza M. G., Bárcena G. R., Cobos P. M., Hernández A., Ortega E. (2002). Effect of exogenous fibrolytic enzyme on ruminal fermentation and digestibility alfalfa and rye-grass hay fed to lambs. J. Anim Sci., 80: 3016–3020.Search in Google Scholar

Pinos-Rodríguez J. M., Moreno R., González S. S., Robinson P. H., Mendoza G., Álvarez G. (2008). Effects of exogenous fibrolytic enzymes on ruminal fermentation and digestibility of total mixed rations fed to lambs. Anim. Feed Sci. Technol., 142: 210–219.Search in Google Scholar

Ranilla M. J., Tejido M. L., Giraldo L. A., Tricárico J. M., Carro M. D. (2008). Effects of an exogenous fibrolytic enzyme preparation on in vitro ruminal fermentation of three forages and their isolated cell walls. Anim. Feed Sci. Technol., 145: 109–121.Search in Google Scholar

Reboucas S., Nussio L. G., Paziani S. F., Pedroso A. F., Mari L. J., Ribeiro J. L., Zopollatto M., Schmidt P., Junqueira M. C., Packer I. U., Campos F. P. (2005). Fibrolytic enzymes and dry matter content of tanzaniagrass silages on the ruminal parameters, ingestive behavior and nutrient digestion of bovine. Rev. Bras. Zootec., 34: 736–745.Search in Google Scholar

Salem A. Z. M., Hassan A. A., Khalil M. S., Gado H. M., Alsersy H., Simbaya J. (2012). Effects of sun-drying and exogenous enzymes on nutrients intake, digestibility and nitrogen utilization in sheep fed Atriplex halimus foliages. Anim. Feed Sci. Technol., 171: 128–135.Search in Google Scholar

Salem A. Z. M., Gado H. M., Colombatto D., Elghandour M. M. Y. (2013). Effects of exogenous enzymes on nutrient digestibility, ruminal fermentation and growth performance in beef steers. Livest. Sci., 154: 69–73.Search in Google Scholar

Salem A. Z. M., Alsersy H., Camacho L. M., El-Adawi M. M., Elghandour M. M., Kholif A. E., Alonso M. U., Zaragoza A. (2015 a). Feed intake, nutrient digestibility, nitrogen utilization, and ruminal fermentation activities in sheep fed Atriplex halimus ensiled with three developed enzyme cocktails. Czech. J. Anim. Sci., 60: 185–194.Search in Google Scholar

Salem A. Z. M., Buendía-Rodríguez G., Elghandour M. M., Mariezcurrena M. A., Peña F. J., Pliego A. B., Chagoyán J. C. V., Cerrillo M. A., Rodríguez M. A. (2015 b). Effects of cellulase and xylanase enzymes mixed with increasing doses of Salix babylonica extract on in vitro rumen gas production kinetics of a mixture of corn silage with concentrate. J. Integrative Agr., 14: 131–139.Search in Google Scholar

Shabar S. K., Sasson G., Doron-Faigenboim A., Durman A., Yaacoby S., Berg Miller M. E., White B. A., Shterzer N., Mizrahi I. (2016). Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. Isme J., 10: 2958–2972.Search in Google Scholar

Shekar C., Thakur S. S., Shelke S. K. (2010). Effect of exogenous fibrolytic enzymes supplementation on milk production and nutrient utilization in Murrah buffaloes. Trop. Anim. Health Prod., 42: 1465–1470.Search in Google Scholar

Srinivas B., Chaturvedi O. H., Malik R., Asgar M. (2008). Effect of enzyme to substrate ratio of exogenous fibrolytic and protease enzymes on in vitro gas production kinetics. In. J. Small Rum., 14: 181–190.Search in Google Scholar

Sutton J. D., Phipps R. H., Deaville E. R., Jones A. K., Humphries D. J. (2002). Wholecrop wheat for dairy cows: effects of crop maturity, a silage inoculant and an enzyme added before feeding on food intake and digestibility and milk production. Anim. Sci., 74: 307–318.Search in Google Scholar

Tang S. X., Tayo Z. L., Sun H., Shen L. X., Zhou C. S., Xiao W. J., Ren G. P., Han X. F., Shen S. B. (2008). Effects of yeast culture and fibrolytic enzyme supplementation on in vitro fermentation characteristics of low-quality cereal straws. J. Anim. Sci., 86: 1164–1172.Search in Google Scholar

Tirado-Estrada G., Mendoza M. G. D., Pinos-Rodríguez J. M., Quezada T. T., Guevara-Lara F. (2011). Effects of two fibrolytic enzyme mixture on growth performance, digestion and ruminal fermentation in lambs fed corn stover based diets. J. Appl. Anim. Res., 39: 158–160.Search in Google Scholar

Tirado-González D. N., Jáuregui-Rincón J., Tirado-Estrada G., Martínez-Hernández P. A., Guevara-Lara F., Miranda-Romero L. A. (2016). Production of cellulases and xylanases by white-rot fungi cultured in corn stover media form ruminant feed applications. Anim. Feed Sci. Technol., 221: 147–156.Search in Google Scholar

Tirado-González D. N., Miranda-Romero L. A., Ruíz-Flores A., Medina-Cuéllar S. E., Ramírez-Valverde R., Tirado-Estrada G. (2018). Meta-analysis: effects of exogenous fibrolytic enzymes in ruminant diets. J. Appl. Anim. Res., 46: 771–776.Search in Google Scholar

Titi H. H. (2003). Evaluation of feeding a fibrolytic enzyme to lactating dairy cows on their lactational performance during early lactation. Asian-Austral. J. Anim. Sci., 16: 677–684.Search in Google Scholar

Valdés K. I., Salem A. Z. M., López S., Alonso M. U., Rivero N., Elghandour M. M. Y., Domínguez I. A., Ronquillo M. G., Kholif A. E. (2015). Influence of exogenous enzymes in presence of Salix babylonica extract on digestibility, microbial protein synthesis and performance of lambs fed maize silage. J. Agric. Sci., 153: 732–742.Search in Google Scholar

Vallejo L. H., Salem A. Z. M., Camacho L. M., Kholif A. M., Mariezcurrena M. D., Cipriano M., Alonso M. U., Olivares J., López S. (2016 a). Effects of xylanase supplementation on feed intake, digestibility and ruminal fermentation in Rambouillet sheep. J. Agricultural Sci., 154: 1110–1117.Search in Google Scholar

Vallejo L. H., Salem A. Z. M., Kholif A. E., Elghandour M. M. Y., Fajardo R. C., Rivero N., Bastida A. Z., Mariezcurrena M. D. (2016 b). Influence of cellulase and xylanase on in vitro rumen gas production and fermentation of corn stover. Indian J. Anim. Sci., 86: 70–74.Search in Google Scholar

Vallejo-Hernández L. H., Elghandour M. M. Y., Greiner R., Anale U. Y., Rivas-Cáceres R., Barros-Rodríguez M., Salem A. Z. M. (2018). Environmental impact of yeast and exogenous xylanase on mitigating carbon dioxide and enteric methane production in ruminants. J. Clean. Prod., 189: 40–46.Search in Google Scholar

Wang Y., Mc Allister T., Rode L., Beauchemin K., Morgavi D., Nsereko V., Iwaasa A., Yang W. (2002). Effects of exogenous fibrolytic enzymes on epiphytic microbial populations and in vitro digestion of silage. J. Sci. Food Agric., 82: 760–768.Search in Google Scholar

Wang Y., Mc Allister T., Baah J., Wilde R., Beauchemin K. A., Rode L. M., Shel-ford J. A., Kamande G. M., Cheng K. J. (2003). Effect of Tween 80 on in vitro fermentation of silages and interactive effects of Tween 80, monoensin and exogenous fibrolytic enzymes on growth performance by feedlot cattle. Asian-Austral. J. Anim. Sci., 16: 968–978.Search in Google Scholar

Wang Y., Spratling B. M., Zo Bell D. R., Wiedmeier R. D., Mc Allister T. A. (2004). Effect of alkali pretreatment of wheat straw on the efficacy of exogenous fibrolytic enzymes. J. Anim. Sci., 82: 198–208.Search in Google Scholar

Wang Y., Ramirez-Bribiesca J. E., Yanke L. J., Tsang A., Mc Allister T. A. (2012). Effect of exogenous fibrolytic enzyme application on the microbial attachment and digestion of barley straw in vitro. Asian-Austral. J. Anim. Sci., 25: 66–74.Search in Google Scholar

Ware R. A., Torrentera N., Zinn R. A. (2005 a). Influence of maceration and fibrolytic enzymes on the feeding value of rice straw. J. Anim. Vet. Adv., 4: 387–392.Search in Google Scholar

Ware R. A., Calderón J. F., Corona L., Zinn R. A. (2005 b). Case study: Comparative feeding value of rice straw in growing-finishing diets for calf-fed Holstein steers: Fibrolytic enzyme supplementation. Prof. Anim. Sci., 21: 416–419.Search in Google Scholar

Xu C., Wang H., Yang F., Yu Z. (2011). Effect of an inoculant and enzymes on fermentation quality and nutritive value of erect milkvetch (Astragalus adsurgens Pall.) silages. J. Anim. Feed Sci., 20: 449–460.Search in Google Scholar

Yang H. E., Son Y. S., Beauchemin K. A. (2011). Effects of exogenous enzymes on ruminal fermentation and degradability of alfalfa hay and rice straw. Asian-Austral. J. Anim. Sci., 24: 56–64.Search in Google Scholar

Yu P., Mc Kinnon J., Christensen D. A. (2005). Improving the nutritional value of oat hulls for ruminant animals with pretreatment of a multienzyme cocktail: in vitro studies. J. Anim. Sci., 83: 1133–1141.Search in Google Scholar

Zhou X., Smith J. A., Oi F. M., Koehler P. G., Bennett G. W., Scharf M. E. (2007). Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Gene, 395: 29–39.Search in Google Scholar

Zhou M., Hernández-Sanabria E., Guan L. L. (2009). Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. App. Environ. Microbiol., 75: 6624–6633.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo