1. bookVolume 21 (2021): Issue 4 (October 2021)
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year
access type Open Access

Polymorphism of OPN and AREG Genes in Relation to Transcript Expression of a Panel of 12 Genes Controlling Reproduction Processes and Litter Size in Pigs

Published Online: 28 Oct 2021
Page range: 1315 - 1346
Received: 16 Apr 2020
Accepted: 18 Jan 2021
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year

The aim of this study was to define the transcript expression of 12 genes, identify new polymorphisms in selected 2 genes and to estimate the association between the level of expression, gene polymorphism and litter size in sows. Two groups of sows were selected: 71 crossbred sows and 328 purebred sows. For transcript analysis endometrial tissue samples were collected, while blood was sampled for the purpose of DNA polymorphism analysis. For all animals data on litter size and weaned piglets were obtained. Transcript analysis of 12 genes was performed in the uterine endometrium of sows in the luteal and follicular phases. Eight out of 12 genes showed higher mRNA expression levels during the luteal phase (AREG, FABP3, IL1A, ITGAV, ITGB3, NMB, OPN, RBP4). In turn, higher expression levels in the follicular phase were observed for 4 genes (IL1B, PPARG, S100A8, SELL). Analysis of six new polymorphic sites within the OPN and AREG genes revealed the highest heterozygosity for OPNe6_Knoll, OPNp3_617 and AREGe2_317 polymorphisms and the lowest heterozygosity in the AREGe3_561 locus. Association analyses concerning transcript expression levels of the 12 genes and the OPN and AREG genotypes in the two groups of sows showed a significant relationship between the IL1A, ITGB3 transcript expression and the OPNe7_603 genotype also between OPNp3_617 genotype and ITGB3 transcript expression. With regard to the litter size and the number of weaned piglets a significant relation with the OPNp3_617, OPNe6_462 and AREGe2_317 genotypes was observed only in the purebred sows. Transcript expression of the genes encoding osteopontin and amphiregulin in the uterus of the sows affect reproductive traits by preparing the uterus for embryo reception.


Altmäe S., Martínez-Conejero J., Salumets A., Simón C., Horcajadas J., Stavreus-Evers A. (2010). Endometrial gene expression analysis at the time of embryo implantation in women with unexplained infertility. Mol. Hum. Reprod., 16: 178–187.Search in Google Scholar

Argente M. J. (2016). Major components in limiting litter size. Insights from Anim. Reprod., https://doi.org/10.5772/62280Search in Google Scholar

Bauersachs S., Wolf E. (2012). Transcriptome analyses of bovine, porcine and equine endometrium during the pre-implantation phase. Anim. Reprod. Sci., 134: 84–94.Search in Google Scholar

Bogacka I., Bogacki M., (2011). The quantitative expression of peroxisome proliferator activated receptor (PPAR) gene in porcine endometrium through the estrous cycle and early pregnancy. J. Physiol. Pharmacol., 62: 559–565.Search in Google Scholar

Carson D. D., Lagow E., Thathiah A., Al-Shami R., Carson M. C. F., Vernon M., Yuan L., Fritz M. A., Lessey B. (2002). Changes in gene expression during the early to midluteal receptive phase. Mol. Hum. Reprod., 8: 871–879.Search in Google Scholar

Cheung V. G., Nayak R. R., Wang I. X., Elwyn S., Cousins S. M., Morley M., Spielman R. S. (2010). Polymorphic cis- and trans-regulation of human gene expression. PloS Biol., 14: e1000480.Search in Google Scholar

Cochran W. G., Cox G. M. (1992). Experimental designs. 2nd ed. New York: John Wiley and Sons.Search in Google Scholar

Das S. K., Chakraborty I., Paria B. C., Wang X. N., Plowman G., Dey S. K. (1995). Amphiregulin is an implantation-specific and progesterone-regulated gene in the mouse uterus. Mol. Endo., 9: 691–705.Search in Google Scholar

De Winter J. (2013). Using the Student’s t-test with extremely small sample sizes. Practical Assess., Res. Eval., 18(10).Search in Google Scholar

Ejskjær K., Sørensen B. S., Poulsen S. S., Mogensen O., Forman A., Nexø E. (2005). Expression of the epidermal growth factor system in human endometrium during the menstrual cycle. Mol. Hum. Reprod., 11: 543–551.Search in Google Scholar

Ensembl database: http://asia.ensembl.org/Sus_scrofa/Info/IndexSearch in Google Scholar

Erikson D., Burghardt R., Bayless K., Johnson G. (2009). Secreted phosphoprotein 1 (SPP1, osteopontin) binds to integrin alphavbeta6 on porcine trophectoderm cells and integrinalphavbeta3 on uterine luminal epithelial cells, and promotes trophectoderm cell adhesion and migration. Biol. Reprod., 81: 814–825.Search in Google Scholar

Fernandez-Rodriguez A., Munoz M., Fernandez A., Pena R., Tomas A., Noguera J., Ovilo C., Fernandez A. (2011). Differential gene expression in ovaries of pregnant pigs with high and low prolificacy levels and identification of candidate genes for litter size. Biol. Reprod., 84: 299–307.Search in Google Scholar

Freimanna S., Ben-Amib I., Dantesa A., Ron-Elb R., Amsterdam A. (2004). EGF-like factor epiregulin and amphiregulin expression is regulated by gonadotropins/cAMP in human ovarian follicular cells. Bioch. Bioph. Res. Comm., 324: 829–834.Search in Google Scholar

Garlow J. E., Ka H., Johnson G. A., Burghardt R. C., Jaeger L. A., Bazer F. W. (2002). Analysis of osteopontin at the maternal-placental interface in pigs. Biol. Reprod., 66: 718–725.Search in Google Scholar

Gui Y., Zhang J. R., Liang W. Q., Cai Z. M. (2008). Expression of amphiregulin in human endometrium during the menstrual cycle. J. Peking Univ. Health Sci., 40: 241–244.Search in Google Scholar

Jiang Z., Robinson J. A. B., Gibbins A. M. V., Gibson J. P., Archibald A. L., Haley C. S. (2002). Mapping of QTLs for prolificacy traits on SSC8 using a candidate gene approach. Proc. 7th World Congress on Genetics Applied to Livestock Production. Montpellier, France. Session 08. Reprod. Comm., 08–02.Search in Google Scholar

Johnson G. A., Burghardt R. C., Joyce M. M., Spencer T. E., Bazer F. W., Gray C. A., Pfarrer C. (2003). Osteopontin is synthesized by uterine glands and a 45-kDa cleavage fragment is localized at the uterine-placental interface throughout ovine pregnancy. Biol. Reprod., 69: 92–98.Search in Google Scholar

Joyce M. M., Gonzalez J. F., Lewis S., Woldesenbet S., Burghardt R. C., Newton G. R., Johnson G. A. (2005). Caprine uterine and placental osteopontin expression is distinct among epitheliochorial implanting species. Placenta, 26: 160–170.Search in Google Scholar

Kapelański W., Eckert R., Jankowiak H., Mucha A., Bocian M., Grajewska S. (2013). Polymorphism of ESR, FSHß, RBP4, PRL, OPN genes and their influence on morphometric traits of gilt reproductive tract before sexual maturity. Acta Vet. Brno, 82: 369–374.Search in Google Scholar

Kim J. G., Vallet J. L., Rohrer G. A., Christenson R. K. (2001). Mapping of the porcine AREG and EGF genes to SSC8. Anim. Genet., 33: 314–315.Search in Google Scholar

Kim J. G., Vallet J. L., Christenson R. K. (2003). Molecular cloning and endometrial expression of porcine amphiregulin. Mol. Reprod. Dev., 65: 366–372.Search in Google Scholar

King A. H., Jiang Z., Gibson J. P., Haley C. S., Archibald A. L. (2003). Mapping quantitative trait loci affecting female reproductive traits on porcine chromosome 8. Biol. Reprod., 68: 2172–2179.Search in Google Scholar

Knecht D., Srodoń S., Duzinski K. (2015). The impact of season, parity and breed on selected reproductive performance parameters of sows. Arch. Anim. Breed., 58: 49–56.Search in Google Scholar

Knoll A., Stratil A., Čepica S., Dvořák J. (1999). Length polymorphism in an intron of the porcine osteopontin (SPP1) gene is caused by the presence or absence of a SINE (PRE-1) element. Anim. Genet., 6: 466.Search in Google Scholar

Korwin-Kossakowska A., Kamyczek M., Cieślak D., Pierzchała M., Kurył J. (2002). The effect of the polymorphism of leptin (LEP), leptin receptor (LEPR) and osteopontin (OPN) genes on selected reproduction traits of synthetic Line 990 sows. Anim. Sci. Pap. Rep., 20: 159–168.Search in Google Scholar

Korwin-Kossakowska A., Goluch D., Kapelański W., Bocian M., Sender G. (2013). Polymorphisms of the osteopontin gene and level of its expression in the reproductive tract of sows. Ann. Anim. Sci., 13: 241–252.Search in Google Scholar

Kumchoo T., Mekchay S. (2015). Association of non-synonymous SNPs of OPN gene with litter size traits in pigs. Arch. Anim. Breed., 58: 317–323.Search in Google Scholar

Lee J., Lee E., Biswas D., Jeung C., Lee G., Hyun S., Jeung E. (2009). Amphiregulin promotes the proliferation of trophoblast cells during preimplantation development of porcine embryos. Theriogenology, 72: 1023–1031.Search in Google Scholar

Lin C., Tholen E., Jennen D., Ponsuksili S., Schellander K., Wimmers K. (2006). Evidence for effects of testis and epididymis expressed genes on sperm quality and boar fertility traits. Reprod. Dom. Anim., 41: 538–543.Search in Google Scholar

Mucha A., Ropka-Molik K., Piórkowska K., Tyra M., Oczkowicz M. (2013). Effect of EGF, AREG and LIF genes polymorphisms on reproductive traits in pigs. Anim. Reprod. Sci., 137: 88–92.Search in Google Scholar

Muráni E., Ponsuksili S., Seyfert H., Shi X., Wimmers K. (2009). Dual effect of a single nucleotide polymorphism in the first intron of the porcine secreted phosphoprotein 1 gene: allele-specific binding of C/EBP beta and activation of aberrant splicing. BMC Mol. Biol., 10: 96.Search in Google Scholar

Nair R., Khanna A., Singh K. (2013). Role of inflammatory proteins S100A8 and S100A9 in pathophysiology of recurrent early pregnancy loss. Placenta, 34: 824–827.Search in Google Scholar

Niu S., Wang X., Hao F., Zhao R. (2008). Effect of the polymorphism of RBP4 and OPN genes on litter size in Tibet pigs. Acta Agricult. Scand., Section A – Anim. Sci., 58: 10–13.Search in Google Scholar

Onteru S. K., Fan B., Du Z. Q., Garrick D. J., Stalder K. J., Rothschild M. F. (2011). A whole-genome association study for pig reproductive traits. Anim. Genet., 43: 18–26.Search in Google Scholar

Passej R., Williams E., Lichańska A., Wells C., Hu S., Geczy C., Little M., Hume D. (1999). A null mutation in the inflammation-associated S100 protein S100A8 causes early resorption on the mouse embryo. J. Immunol., 163: 2209–2216.Search in Google Scholar

Pierzchała M., Hoekman A., Urbański P., Kruijt L., Kristensen L., Young J., Oksberg N., Goluch D., te Pas M. (2014). Validation of biomarkers for loin meat quality (M. longissimus) of pigs. J. Anim. Breed. Genet., 4: 258–270.Search in Google Scholar

Pierzchała M., Pierzchała D., Ogłuszka M., Poławska E., Blicharski T., Roszczyk A., Nawrocka A., Urbański P., Stepanow K., Ciepłoch A., Korwin-Kossakowska A., te Pas M., Ślaska B., Buszewska-Forajta M., Jaśkowski J., Sachajko M., Herudzińska M., Jaśkowski B., Ni ż ański W., Fraser L., Kadarmideen H. N., Pareek C. S. (2020). Identification of differential expressed gene transcripts in porcine endometrium during early stages of pregnancy. Life, 10: 68.Search in Google Scholar

Procházka R., Petlach M., Nagyová E., Němcová L. (2011). Effect of epidermal growth factor-like 1 peptides on pig cumulus cell expansion, oocyte maturation and acquisition of developmental competence in vitro: Comparison with gonadotropins. Reproduction, 141: 425–435.Search in Google Scholar

Rosen S. (2004). Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol., 22: 129–156.Search in Google Scholar

Ruijter J., Ramakers C., Hoogaars W., Karlen Y., Bakker O., vanden Hoff M., Moorman A. (2009). Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucl. Aci. Res., 37: e45.Search in Google Scholar

Ruoslahti E. (1996). RGD and other recognition sequences for integrins. Annu. Rev. Cell Devel. Biol., 12: 697–715.Search in Google Scholar

Samborski A., Graf A., Krebs S., Kessler B., Bauersachs S. (2013). Deep sequencing of the porcine endometrial transcriptome on day 14 of pregnancy. Biol. Reprod., 88: 84.Search in Google Scholar

Sebio A., Paez D., Salazar J., Berenguer-Llergo A., Pare-Brunet L., Lasa A., Del Rio E., Toben M., Martin-Richard M., Baiget M., Barnadas A. (2014). Intergenic polymorphisms in the amphiregulin gene region as biomarkers in metastatic colorectal cancer patients treated with anti-EGFR plus irinotecan. Pharmacogenomics J., 14: 256–262.Search in Google Scholar

Shoyab M., Plowman G., Mc Donald V., Bradley J., Todaro G. (1989). Structure and function of human amphiregulin: a member of the epidermal growth factor family. Science, 243: 1074–1076.Search in Google Scholar

Spencer T. E., Sandra O., Wolf E. (2008). Genes involved in conceptus–endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches. Reproduction, 135: 165–179.Search in Google Scholar

Stranger B., Forrest M., Clark A., Minichiello M., Deutsch S., Lyle R., Hunt S., Kahl B., Antonarakis S. E., Tavaré S., Deloukas P., Dermitzakis E. T. (2005). Genome-wide associations of gene expression variation in humans. PLoS Genet., 1: e78.Search in Google Scholar

Sun Y., Fang S., Dong H., Zhao C., Yang Z., Li P., Wang J. (2011). Correlation between osteopontin messenger RNA expression and microcalcification shown on sonography in papillary thyroid carcinoma. J. Ultra. Med., 30: 765–771.Search in Google Scholar

Wakatsuki T., Stintzing S., Zhang W., Dongyun Yang D., Mizutomo Azuma M., Yan Ning Y., Yamauchi S., Matsusaka S., Volz N. B., Sunakawa Y., Koizumi W., Watanabe M., Barzi A., El Khoueiry A. B., Shah M. A., Lenz H. J. (2014). Single nucleotide polymorphisms in AREG and EREG are prognostic biomarkers in locally advanced gastric cancer (GC) patients after surgery with curative intent. Pharmacogenet. Genom., 24: 539–547.Search in Google Scholar

Wang X., Cheng M., Zhao M., Ge A., Guo F., Zhang M., Yang Y., Liu L., Yang N. (2013). Differential effects of high-fat-diet rich in lard oil or soybean oil on osteopontin expression and inflammation of adipose tissue in diet-induced obese rats. J. Ultra. Med., 52: 1181–1189.Search in Google Scholar

White F. J., Ross J. W., Joyce M. M., Geisert R. D., Burghardt R. C., Johnson G. A. (2005). Steroid regulation of cell specific secreted phosphoprotein 1 (osteopontin). Expression in the pregnant porcine uterus. Biol. Reprod.,73: 1294–1301.Search in Google Scholar

White F. J., Burghardt R. C., Hu J., Joyce M. M., Spencer T. E., Johnson G. A. (2006). Secreted phosphoprotein 1 (osteopontin) is expressed by stromal macrophages in cyclic and pregnant endometrium of mice, but is induced by estrogen in luminal epithelium during conceptus attachment for implantation. Reproduction, 132: 919–929.Search in Google Scholar

Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T. (2012). Primer-BLAST: A tool to design target specific primers for polymerase chain reaction. BMC Bioinform., 13: 134.Search in Google Scholar

Zak L. J., Gaustad A. H., Bolarin A., Broekhuijse M. L. W. J., Walling G. A., Grant A., Knol E. F. (2017). Genetic control of complex traits, with a focus on reproduction in pigs. Mol. Reprod. Dev., 2: 1004–1011.Search in Google Scholar

Zamah A. M., Hsieh M., Chen J., Vigne J. L., Rosen M. P., Cedars M. I., Conti M. (2010). Human oocyte maturation is dependent on LH-stimulated accumulation of the epidermal growth factor-like growth factor, amphiregulin. Hum. Reprod., 25: 2569–2578.Search in Google Scholar

Zhang Q., Wrana J. L., Sodek J. (1992). Characterization of the promoter region of the porcine opn (osteopontin, secreted phosphoprotein 1) gene. Eur. J. Biochem., 207: 649–665.Search in Google Scholar

Zhang X., Huang L., Wu T., Feng Y., Ding Y., Ye P., Yin Z. (2015) Transcriptomic analysis of ovaries from pigs with high and low litter size. Plos ONE, 10.1371.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo