1. bookAHEAD OF PRINT
Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Technical, biological and molecular aspects of somatic cell nuclear transfer – a review

Published Online: 26 Mar 2021
Page range: -
Received: 29 Aug 2020
Accepted: 26 Jan 2021
Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Since the announcement of the birth of the first cloned mammal in 1997, Dolly the Sheep, 24 animal species including laboratory, farm, and wild animals have been cloned. The technique for somatic cloning involves transfer of the donor nucleus of a somatic cell into an enucleated oocyte at the metaphase II (MII) stage for the generation of a new individual, genetically identical to the somatic cell donor. There is increasing interest in animal cloning for different purposes such as rescue of endangered animals, replication of superior farm animals, production of genetically engineered animals, creation of biomedical models, and basic research. However, the efficiency of cloning remains relatively low. High abortion, embryonic, and fetal mortality rates are frequently observed. Moreover, aberrant developmental patterns during or after birth are reported. Researchers attribute these abnormal phenotypes mainly to incomplete nuclear remodeling, resulting in incomplete reprogramming. Nevertheless, multiple factors influence the success of each step of the somatic cloning process. Various strategies have been used to improve the efficiency of nuclear transfer and most of the phenotypically normal born clones can survive, grow, and reproduce. This paper will present some technical, biological, and molecular aspects of somatic cloning, along with remarkable achievements and current improvements.

Keywords

Adams A.M., Pratt S.L., Gibbons J.R., Arat S., Respess D.S., Stice, S.L. (2004). 22 Production of a cloned calf using kidney cells obtained from a 48-hour cooled carcass. Reprod. Fertil. Dev., 16: 133-292.Search in Google Scholar

Alexander B., Coppola G., Perrault S.D., Peura T.T, Betts D.H., King W.A. (2007). Telomere length status of somatic cell sheep clones and their offspring. Mol. Reprod. Dev., 74: 1525-37.Search in Google Scholar

Ambrosi D.J., Rasmussen T.P. (2005). Reprogramming mediated by stem cell fusion. J. Cell. Mol. Med., 9(2): 320-30.Search in Google Scholar

An Q., Peng W., Cheng Y., Lu Z., Zhou C., Zhang Y., Su J. (2019). Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos. J. Cell. Physiol., 234 (10): 17370-17381.Search in Google Scholar

Arat S., Bagis, H., Odaman Mercan H., Dinnyes A. (2005). 28 Cloned embryos can be produced using donor cells obtained from a 72-hour cooled carcass. Reprod. Fertil. Dev., 17: 164-164.Search in Google Scholar

Baguisi A., Behboodi E., Melican D.T., Pollock J.S., Destrempes M.M., Cammuso C., Williams J.L., Nims S.D., Porter C.A., Midura P., Palacios M.J., Ayres S.L., Denniston R.S., Hayes M.L., Ziomek C.A., Meade H.M., Godke R.A., Gavin W.G., Overström E.W., Echelard Y. (1999). Production of goats by somatic cell nuclear transfer. Nat. Biotechnol., 17: 456-461.Search in Google Scholar

Batchelder C.A., Hoffert K.A., Bertolini M., Moyer A.L., Mason J.B., Petkov S.G., Famula T.R., Anderson G.B. (2005). Effect of nuclear-donor cell lineage, type and cell donor on development of somatic cell nuclear transfer in cattle. Cloning Stem Cells, 4: 238–254.Search in Google Scholar

Berg D. K., Li C., Asher G., Wells D. N., Oback B. (2007). Red deer cloned from antler stem cells and their differentiated progeny. Biol. Reprod., 77(3): 384-394.Search in Google Scholar

Betts D., Bordignon V., Hill J., Winger Q., Westhusin M., Smith L., King W.A. (2001). Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc. Natl. Acad. Sci. U.S.A., 98: 1077-1082.Search in Google Scholar

Blackburn E.H. (1991). The structure and function of telomeres. Nature, 350: 569-573.Search in Google Scholar

Boiani M., Eckartd S., Leu N.A., Schöler H.R., McLaughlin K.J. (2003). Pluripotency deficit in clones overcome by clone aggregation: epigenetic complementation? EMBO J., 22(19): 5304-12.Search in Google Scholar

Boquest C.A, Day N.B., Prather S.R. (1999). Flow cytometric cell cycle analysis of cultured porcine fetal fibroblast cells. Biol. Reprod., 60: 1013-1019.Search in Google Scholar

Buemo C.P., Gambini A., Moro L.N, Hiriart M.I., Fernandez-Martini R., Collas P., Salamone D.F. (2016). Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality. PLoS One, 11(2): e0146390.Search in Google Scholar

Campbell K.H., Loi, P., Otaegui P.J., Wilmut I. (1996a). Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev. Reprod., 1: 40–46.Search in Google Scholar

Campbell K.H., McWhir J., Ritchie W.A., Wilmut I. (1996b). Sheep cloned by nuclear transfer from a cultured cell line. Nature, 380: 64–66.Search in Google Scholar

Cao Z., Li Y., Chen Z., Wang H., Zhang M., Zhou N., Wu R, Ling Y, Fang F., Li N., Zhang Y. (2015). Genome-Wide Dynamic Profiling of Histone Methylation during Nuclear Transfer-Mediated Porcine Somatic Cell Reprogramming. PLoS One, 10(12), e0144897.Search in Google Scholar

Chang C.C., Gao S., Sung L.Y., Corry G. N., Ma Y., Nagy Z. P., Tian X.C., Rasmussen T. P. (2010). Rapid Elimination of the Histone Variant MacroH2A from Somatic Cell Heterochromatin after Nuclear Transfer. Cell. Reprogram., 12(1): 43–53.Search in Google Scholar

Chen Y., Xu Z.H.E., Liu A., Wang K., Mao W.W., Chu J.X., Lu Y., Fang Z.F., Shi Y.T., Yang Q.Z., Chen D.Y., Wang M.K., Li J.S., Huang S.L., Kong X.Y., Shi Y.Z., Wang Z.Q., Xia J.H., Long Z.G., Xue Z.G., Ding W.X., Sheng H.Z. (2003). Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes. Cell Res., 13: 251–263.Search in Google Scholar

Chesne P., Adenot P.G., Viglietta C., Baratte M., Boulanger L., Renard, J.P. (2002). Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat. Biotechnol., 20: 366–369.Search in Google Scholar

Choi I., Campbell K.H.S. (2010). Treatment of ovine oocytes with caffeine increases the accessibility of DNase I to the donor chromatin and reduces apoptosis in somatic cell nuclear transfer embryos. Reprod. Fertil. Dev., 22: 1000–1014Search in Google Scholar

Choi Y.H., Love C.C., Chung Y.G., Varner D.D., Westhusin M.E., Burghardt R.C., Hinrichs K. (2002). Production of nuclear transfer horse embryos by Piezo-driven injection of somatic nuclei and activation with stallion sperm cytosolic extract. Biol. Reprod., 67: 561-567Search in Google Scholar

Choi Y.H., Ritthaler J., Hinrichs H. (2014). Production of a mitochondrial-DNA identical cloned foal using oocytes recovered from immature follicles of selected mares. Theriogenology, 82 (3): 411–417.Search in Google Scholar

Cibelli J.B., Stice. S.L., Golueke P.J., Kane J.J., Jerry J., Blackwell C., Ponce de León F.A., Robl J.M. (1998) Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 280: 1256-1258.Search in Google Scholar

Costa-Borges N., Santaló J., Ibáñez E. (2010). Comparison between the effects of valproic acid and trichostatin A on the in vitro development, blastocyst quality, and full-term development of mouse somatic cell nuclear transfer embryos. Cell. Reprogram., 12 (4): 437–446.Search in Google Scholar

Czernik M., Anzalone D.A., Palazzese L., Oikawa M., Pasqualino L. (2019). Somatic cell nuclear transfer: failures, successes and the challenges ahead. Int. J. Dev. Biol., 63: 123–130.Search in Google Scholar

Dalman A., Eftekhari-Yazdi P., Valojredi M.R., Shahverdi A., Gourabi H., Janzamin E., Fakheri R., Sadeghian F., Hasani F. (2010). Synchronizing cell cycle of goat fibroblasts by serum starvation causes apoptosis. Reprod. Dom. Anim., 45(5): e46-53.Search in Google Scholar

Djekidel M. N., Inoue A., Matoba S., Suzuki T., Zhang C., Lu F., Jiang L., Zhang Y. (2018). Reprogramming of Chromatin Accessibility in Somatic Cell Nuclear Transfer Is DNA Replication Independent. Cell. Reprogram., 23(7): 1939–1947.Search in Google Scholar

Eggan K., Akutsu H., Hochedlinger K., Rideout W 3rd., Yanagimachi R., Jaenisch R. (2000). X-Chromosome inactivation in cloned mouse embryos. Science, 290: 1578–1581Search in Google Scholar

Enright B.P., Kubota C., Yang X., Tian X.C. (2003). Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2’-deoxycytidine. Biol. Reprod., 69(3): 896-901.Search in Google Scholar

Folch J., Cocero M.J., Chesne P., Alabart J.L., Dominguez V., Cognie Y, Roche A., Fernández-Arias A., Martí J.I., Sánchez P., Echegoyen E., Beckers J.F., Bonastre A.S., Vignon X. (2009). First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning. Theriogenology, 71: 1026–1034.Search in Google Scholar

Galli C., Duchi R., Moor R.M., Lazzari G. (1999). Mammalian leukocytes contain all the genetic information necessary for the development of a new individual. Cloning, (1): 161–170.Search in Google Scholar

Galli C., Lagutina I., Crotti G., Colleoni S., Turini P., Ponderato N., Duchi R., Lazzari G. (2003). A cloned horse born to its dam twin. Nature, 424:635.Search in Google Scholar

Gambini A., Maserati M. (2018). A journey through horse cloning. Reprod. Fertil. Dev., 30: 8-17.Search in Google Scholar

Gao S., Chung Y.G., Parseghian M.H., King G.J., Adashi E.Y., Latham K.E. (2004). Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: Evidence for a uniform developmental program in mice. Dev. Biol., 266: 62–75.Search in Google Scholar

Gómez M. C., Pope E., Harris R., Mikota S., Dresser B.L. (2003). Development of in vitro matured, in vitro fertilized domestic cat embryos following cryopreservation, culture and transfer. Theriogenology, 60: 239–251.Search in Google Scholar

Gómez M.C, Pope C.E., Giraldo A., Lyons L.A., Harris R.F., King A.L, Cole A., Godke R.A., Dresser B.L. (2004). Birth of African wildcat cloned kittens born from domestic cats. Cloning Stem Cells, 6: 247–258.Search in Google Scholar

Gómez M.C., Pope C.E., Kutner R.H., Ricks D.M., Lyons L.A., Ruhe M.D., Dumas C., Lyons J., López M., Dresser B.L., Reiser J. (2008). Nuclear transfer of sand cat cells into enucleated domestic cat oocytes is affected by cryopreservation of donor cells. Cloning Stem Cells, 4: 469–483.Search in Google Scholar

Gómez M.C., Biancardi M.N., Jenkins J.A., Dumas C., Galiguis J., Wang G., Earle Pope C. (2012). Scriptaid and 5-aza-2’deoxycytidine enhanced expression of pluripotent genes and in vitro developmental competence in interspecies black-footed cat cloned embryos. Reprod. Domest. Anim., 47 (Suppl 6): 130–135.Search in Google Scholar

Gouveia C., Huyser C., Egli D., Pepper M. S. (2020). Lessons learned from somatic cell nuclear transfer. Int. J. Mol. Sci., 21 (7): 2314.Search in Google Scholar

Guo Z., Lv L., Liu D., Fu B. (2018). Effects of trichostatin A on pig SCNT blastocyst formation rate and cell number: A meta-analysis. Res. Vet. Sci., 117: 161–166.Search in Google Scholar

Gupta M.K., Heo Y.T., Kim D.K., Lee H.T., Uhm S.J. (2019). 5-Azacytidine improves the meiotic maturation and subsequent in vitro development of pig oocytes. Anim. Reprod. Sci., 208: 106118.Search in Google Scholar

Gurdon J.B., Laskey R.A., De Robertis E.M., Partington G.A. (1979). Reprogramming of transplanted nuclei in amphibia. Int. Rev. Cytol. (Suppl.), 9: 161–178.Search in Google Scholar

Harley C.B., Futcher A.B., Greider C.W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature, 345(6274): 458–460.Search in Google Scholar

Hastie N.D., Dempster M., Dunlop M.G., Thompson A.M. Green D.K., Allshire R.C. (1990). Telomere reduction in human colorectal carcinoma and with ageing. Nature, 346: 866-8.Search in Google Scholar

Hill J.R. (2014). Incidence of abnormal offspring from cloning and other assisted reproductive technologies. Annu. Rev. Anim. Biosci., 2: 16.1–16.15.Search in Google Scholar

Hoshino Y., Hayashi N., Taniguchi S., Kobayashi N., Sakai K., Otani T., Iritani A., Saeki K. (2009). Resurrection of a bull by cloning from organs frozen without cryoprotectant in a −80°C freezer for a decade. PLoS One, 4(1): e4142.Search in Google Scholar

Inoue K., Kohda T., Sugimoto M., Sado T., Ogonuki N., Matoba S., Shiura H., Ikeda R., Mochida K., Fujii T., Sawai K., Otte A.P., Tian X.C., Yang X., Ishino F., Abe K., Ogura A. (2010). Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science, 330(6003): 496–499.Search in Google Scholar

Iuso D., Czernik M., Toschi P., Fidanza A., Zacchini F., Feil R., Curtet S., Buchou T., Shiota H., Khochbin S., Ptak G.E., Loi P. (2015). Exogenous expression of human protamine 1 (hPrm1) remodels fibroblast nuclei into spermatid-like structures. Cell Rep., 13(9): 1765–1771.Search in Google Scholar

Iuso D., Czernik M., Zacchini F., Ptak G., Loi P. (2013). A simplified approach for oocyte enucleation in mammalian cloning. Cell. Reprogram., 15(6): 490-494.Search in Google Scholar

Ma L.B., He X.Y., Wang F.M., Cheng T., Liu X.Y. (2014). Somatic cell reprogrammed by oocyte: process and barricade. Anim. Cells Syst. (Seoul), 18: 161–171.Search in Google Scholar

Jena M.K., Malakar D. (2018). Handmade cloning: a handy technique for reproductive cloning. J. Pharm. Sci. Res. 9: 1564–1568.Search in Google Scholar

Jin L., Guo Q., Zhang G.L., Xing X.X., Xuan M.F., Luo Q.R., Luo Z.B., Wang J.X., Yin X.J., Kang J.D. (2018). The histone deacetylase inhibitor, CI994, improves nuclear reprogramming and in vitro developmental potential of cloned pig embryos. Cell. Reprogram., 20 (3): 205–213.Search in Google Scholar

Jin J.X., Kang J.D., Li S., Jin L., Zhu H.Y., Guo Q., Gao Q.S., Yan C.G., Yin X.J. (2015). PXD101 significantly improves nuclear reprogramming and the in vitro developmental competence of porcine SCNT embryos. Biochem. Biophys. Res. Commun., 456(1): 156-61.Search in Google Scholar

Kato H., Anzai M., Mitani T., Morita M., Nishiyama Y., Nakao A., Kondo K., Lazarev P.A., Ohtani T., Shibata Y., Iritani A. (2009). Recovery of cell nuclei from 15,000 years old mammoth tissues and its injection into mouse enucleated matured oocytes. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci., 85(7): 240–247.Search in Google Scholar

Kato Y., Tani T., Tsunoda Y. (2000). Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. J. Reprod. Fertil., 120: 231-237.Search in Google Scholar

Khammanit R., Chantarku S., Kitiyanat Y., Saikhun J. (2008). Effect of serum starvation and chemical inhibitors on cell cycle synchronization of canine dermal fibroblasts. Theriogenology, 70: 27-34.Search in Google Scholar

Kikyo N., Wade P.A., Guschin D., Ge H., Wolffe A.P. (2000). Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science, 289(5488): 2360–2362.Search in Google Scholar

Kim J.M., Ogura A., Nagata M., Aoki F. (2002). Analysis of the mechanism for chromatin remodeling in embryos reconstructed by somatic nuclear transfer. Biol. Reprod., 67(3): 760–766.Search in Google Scholar

Kishigami S., Mizutani E., Ohta H., Hikichi T., Thuan N.V., Wakayama S., Bui HT., Wakayama T. (2006). Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem. Biophys. Res. Commun., 340 (1): 183–189.Search in Google Scholar

Kuwayama H., Tanabe Y., Wakayama T., Kishigami A. (2017). Birth of cloned mice from vaginal smear cells after somatic cell nuclear transfer. Theriogenology, 94: 79-85.Search in Google Scholar

Lagutina I., Lazzari G., Duchi R., Colleoni S., Ponderato N., Turin, P., Crotti G., Galli C. (2005). Somatic cell nuclear transfer in horses: effect of oocyte morphology, embryo reconstruction method and donor cell type. Reprod., 130: 559-67.Search in Google Scholar

Lagutina I., Lazzari G., Galli C. (2006). Birth of cloned pigs from zona-free nuclear transfer blastocysts developed in vitro before transfer. Cloning Stem Cells, 8: 283–293.Search in Google Scholar

Lanza R.P., Cibelli J.B., Blackwell C., Cristofalo V.J., Francis M.K., Baerlocher G.M., Mak J., Schertzer M., Chavez E.A., Sawyer N., Lansdorp P.M., West M.D. (2000). Extension of cell line lifespan and telomere length in animals cloned from senescent somatic cells. Science, 288: 665-669.Search in Google Scholar

Lee J.W., Wu S.C., Tian X.C., Barber M., Hoagland T., Riesen J., Lee K.H., Tu C.F., Cheng W.T., Yang X. (2003). Production of cloned pigs by whole-cell intracytoplasmic microinjection. Biol. Reprod., 69 (3): 995–1001.Search in Google Scholar

Lee B.C., Kim M.K., Jang G., Oh H.J., Yuda F., Kim H.J. (2005). Dogs cloned from adult somatic cells. Nature, 436(7051): 641.Search in Google Scholar

Lee J., Lee, Y., Lee G.S., Lee S.T., Lee E. (2019). Comparative study of the developmental competence of cloned pig embryos derived from spermatogonial stem cells and fetal fibroblasts. Reprod. Domest. Anim., 54: 1258-1264.Search in Google Scholar

Lee J.H., Peters A., Fisher P., Bowles E.J., St John J.C., Campbell K.H. (2010). Generation of mtDNA homoplasmic cloned lambs. Cell. Reprogram., 12: 347–355.Search in Google Scholar

Lee K., Davis A., Zhang L., Ryu J., Spate L. D., Park K. W., Samuel M.S., Walters E.M., Murphy C.N., Machaty Z., Prather R. S. (2015). Pig oocyte activation using a Zn2+ chelator, TPEN. Theriogenology, 84: 1024–1032.Search in Google Scholar

Lee S.C., Lee H., Oh K.B., Hwang I.S., Yang H., Park M.R., Ock S.A., Woo J.S., Im G.S., Hwang S. (2017). Production and breeding of transgenic cloned pigs expressing human CD73. Dev. Reprod., 21 (2): 157–165.Search in Google Scholar

Lee H.S., Yu X.F., Bang J.I., Cho S.J., Deb G.K., Kim B.W., Kong I.K. (2010a). Enhanced histone acetylation in somatic cells induced by a histone deacetylase inhibitor improved inter-generic cloned leopard cat blastocysts. Theriogenology, 74 (8): 1439–1449.Search in Google Scholar

Lee S.L., Kang E.J., Maeng G.H., Kim M.J., Park J.K., Kim T.S., Hyun S.H., Lee E.S., Rho G.J. (2010b). Developmental ability of miniature pig embryos cloned with mesenchymal stem cells. J. Reprod. Dev., 56 (2): 256–262.Search in Google Scholar

Li J., Chen D., Han Z., Zhu Z., Wen D., Sun Q., Liu Z., Wang M., Lian L., Du J., Wang P., Zhang H. (2002). Serial nuclear transfer improves the development of interspecies reconstructed giant panda (Ailuropoda melanoleuca) embryos. Chin. Sci. Bull., 47 (6): 467-469.Search in Google Scholar

Li R., Murphy C.N., Spate L., Wax D., Isom C., Rieke A., Walters E.M., Samuel M., Prather R. S. (2009). Production of piglets after cryopreservation of embryos using a centrifugation-based method for delipation without micromanipulation. Biol. Reprod., 80: 563–571.Search in Google Scholar

Li X., Li Z., Jouneau A., Zhou Q., Renard J.P. (2003). Nuclear transfer: Progress and quandaries. Reprod. Biol. Endocrinol., 1: 84.Search in Google Scholar

Li Z., Sun X., Chen J., Liu X., Wisely S.M., Zhou Q., Renard J.P., Leno G.H., Engelhardt J.F. (2006). Cloned ferret produced by somatic cell nuclear transfer. Dev. Biol., 293(2): 439-448.Search in Google Scholar

Li Z., He X., Chen L., Shi J., Zhou R., Xu W., Liu D., Wu Z. (2013). Bone marrow mesenchymal stem cells are an attractive donor cell type for production of cloned pigs as well as genetically modified cloned pigs by somatic cell nuclear transfer. Cell. Reprogram., 15 (5): 459–470.Search in Google Scholar

Liu, Z., Cai, Y., Wang, Y., Nie, Y., Zhang, C., Xu, Y., Zhang, X., Lu, Y., Wang, Z., Poo, M., Sun, Q. (2018). Cloning of macaque monkeys by somatic cell nuclear transfer. Cell, 172 (4): 881–887.e7.Search in Google Scholar

Loi P., Clinton M., Barboni B., Fulka Jr.J., Cappai P., Feil R., Moor R.M., Ptak G. (2002). Nuclei of nonviable ovine somatic cells develop into lambs after nuclear transplantation. Biol. Reprod., 67: 126–132.Search in Google Scholar

Loi P., Iuso D., Czernik M., Ogura A. (2016). A new, dynamic era for somatic cell nuclear transfer? Trends Biotechnol., 34 (10): 791–797.Search in Google Scholar

Loi P., Matsukawa K., Ptak G., Clinton M., Fulka JrJ., Nathan Y., Arav A. (2008). Freeze-dried somatic cells direct embryonic development after nuclear transfer. PLoS One, 3: e2978.Search in Google Scholar

Loi P., Modlinski J.A., Ptak, G. (2011). Interspecies somatic cell nuclear transfer: a salvage tool seeking first aid. Theriogenology, 76: 217–228.Search in Google Scholar

Loi P., Saragusty J., Ptak G. (2014). Cloning the mammoth: a complicated task or just a dream? Adv. Exp. Med. Biol., 753: 489–502.Search in Google Scholar

Luo Y., Wang Y., Liu J., Lan H., Shao M., Yu Y., Quan F., Zhang Y. (2015). Production of transgenic cattle highly expressing human serum albumin in milk by phiC31 integrase-mediated gene delivery. Transgenic Res., 24: 875–883.Search in Google Scholar

Macháty Z., Wang W.H., Day B.N., Prather R.S. (1997). Complete activation of porcine oocytes induced by the sulfhydryl reagent, thimerosal. Biol. Reprod., 57 (5): 1123–1127.Search in Google Scholar

Madheshiya P.K., Sahare A.A., Jyotsana B., Singh K.P., Saini M., Raja A.K., Kaith S., Singla S.K., Chauhan M.S., Manik R.S., Palta P. (2015). Production of a cloned buffalo (Bubalus bubalis) calf from somatic cells isolated from urine. Cell. Reprogram., 3: 160–169.Search in Google Scholar

Mahdi E., Fakhrisadat H. (2012). Handmade cloning: an alternative technique for somatic cell nuclear transfer. Ann. Biol. Res., 3: 3043-8.Search in Google Scholar

Mann M.R., Chung Y.G., Nolen L.D., Verona R.I., Latham K.E., Bartolomei M.S. (2003). Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod., 69: 902-914.Search in Google Scholar

Mann R.W.M., Bartolomei M.S. (2002). Epigenetic reprogramming in the mammalian embryo: struggle of the clones. Genome Biol., 3 (2): 1003.1-1003.4.Search in Google Scholar

Matoba S., Zhang, Y. (2018). Somatic cell nuclear transfer reprogramming: mechanisms and applications. Cell Stem Cell., 23(4): 471-585.Search in Google Scholar

Matoba S., Liu Y., Lu F., Iwabuchi K. A., Shen L., Inoue A., Zhang Y. (2014). Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell, 159(4): 884–895.Search in Google Scholar

Mitalipov S., Wolf D. (2009). Totipotency, pluripotency and nuclear reprogramming. Adv. Biochem. Eng. Biotechnol., 114: 185-199.Search in Google Scholar

Mizutani E., Ohta H., Kishigami S., Van Thuan N., Hikichi T., Wakayam, S., Kosaka M., Sato E., Wakayama T. (2006). Developmental ability of cloned embryos from neural stem cells, Reproduction, 132(6): 849-857.Search in Google Scholar

Nashun B., Akiyama T., Suzuki M.G., Aoki F. (2011). Dramatic replacement of histone variants during genome remodeling in nuclear-transferred embryos. Epigenetics, 6: 1489-1497.Search in Google Scholar

Niemann H. (2016). Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology, 86(1): 80-90.Search in Google Scholar

Niemann H., Lucas-Hahn A. (2012). Somatic cell nuclear transfer cloning: Practical application and current legislation. Reprod. Dom. Anim., 47: 2-10.Search in Google Scholar

Niemann H., Tian X.C., King W.A., Lee R.S.F. (2008). Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer. Reproduction, 135: 151–163.Search in Google Scholar

Nowak-Imialek M., Kues W.A., Carnwath J.W., Niemann H. (2011). Pluripotent stem cells and reprogrammed cells in farm animals. Microsc. Microanal., 17: 474-497.Search in Google Scholar

Oback B., Wells D. (2002). Donor cells for nuclear cloning: many are called, but few are chosen. Cloning Stem Cells, 4 (2): 147-168.Search in Google Scholar

Ogura A., Inoue K., Takano K., Wakayama T., Yanagimachi R. (2000). Birth of mice after nuclear transfer by electrofusion using tail tip cells. Mol. Reprod. Dev. 57 (1): 55–59.Search in Google Scholar

Olivera R., Moro L.N., Jordan R., Luzzani C., Miriuka S., Radrizzani M., Donadeu F.X., Vichera G. (2016). In vitro and in vivo development of horse cloned embryos generated with iPSCs, mesenchymal stromal cells and fetal or adult fibroblasts as nuclear donors. PLoS One 11 (10): e0164049.Search in Google Scholar

Olivera R., Moro L.N., Jordan R., Pallarols N., Guglielminetti A., Luzzani C., Miriuka S.G., Vichera G. (2018). Bone marrow mesenchymal stem cells as nuclear donors improve viability and health of cloned horses. Stem Cells Cloning, 11: 13–22.Search in Google Scholar

Ono T., Mizutani E., Li C., Wakayama T. (2008). Nuclear transfer preserves the nuclear genome freeze-dried mouse cells. J. Reprod. Dev., 54: 486-491.Search in Google Scholar

Ono Y., Shimozawa N., Ito M., Kono T. (2001). Cloned mice from fetal fibroblast cells arrested at metaphase by a serial nuclear transfer. Biol. Reprod., 64: 44–50.Search in Google Scholar

Opiela J., Samiec M. (2013). Characterization of mesenchymal stem cells and their application in experimental embryology. Pol. J. Vet. Sci., 16 (3): 593–599.Search in Google Scholar

Opiela J., Samiec M., Bochenek M., Lipiński D., Romanek J., Wilczek P. (2013). DNA aneuploidy in porcine bone marrow-derived mesenchymal stem cells undergoing osteogenic and adipogenic in vitro differentiation. Cell. Reprogram., 15 (5): 425–434.Search in Google Scholar

Opiela J., Samiec M., Romanek J. (2017). In vitro development and cytological quality of inter-species (porcine→bovine) cloned embryos are affected by trichostatin A-dependent epigenomic modulation of adult mesenchymal stem cells. Theriogenology, 97: 27–33.Search in Google Scholar

Park D.S., Cerrone M., Morley G., Vasquez C., Fowler S., Liu N., Bernstein S.A., Liu F.Y., Zhang J., Rogers C.S., Priori S.G., Chinitz L.A., Fishman G.I. (2015) Genetically engineered SCN5A mutant pig hearts exhibit conduction defects and arrhythmias. J. Clin. Invest., 125: 403–412.Search in Google Scholar

Poleajeva I.A., Chen S.H., Vaught T.D., Page R.L., Mullins J., Ball S., Dai Y., Boone J., Walker S., Ayares D.L., Colman A., Campbell K.H. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 407: 505-509.Search in Google Scholar

Prather R.S., Kuhholzer B., Lai L., Park, K.W. (2000). Changes in the structure of nuclei after transfer to oocytes. Cloning, (2): 117–122.Search in Google Scholar

Priya D., Selokar N.L., Raja A.K., Saini M., Sahare A.A., Nala N., Palta P., Chauhan M.S., Manik R.S., Singla S.K. (2014). Production of wild buffalo (Bubalus arnee) embryos by interspecies somatic cell transfer using domestic buffalo (Bubalus bubalis) oocytes. Reprod. Dom. Anim., 49(2): 343-51.Search in Google Scholar

Rakha A. (2015). Cloning efficiency and a comparison between donor cell types. Cloning & Transgenesis, 4: 141.Search in Google Scholar

Richter A., Kurome M., Kessler B., Zakhartchenko V., Klymiuk N., Nagashima H., Wolf E., Wuensch A. (2012). Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig. BMC Biotechnol., (9)12: 84.Search in Google Scholar

Rideout W.M. 3rd., Eggan K., Jaenisch R. (2001). Nuclear cloning and epigenetic reprogramming of the genome. Science, 293(5532): 1093-8.Search in Google Scholar

Saadeldin I.M., Kim S.J., Choi Y.B., Lee B.C. (2014). Improvement of cloned embryos development by co-culturing with parthenotes: a possible role of exosomes/microvesicles for embryos paracrine communication. Cell. Reprogram., 16(3): 223-34.Search in Google Scholar

Saeki K., Hoshino Y., Taniguchi S. (2014). Biological age of cloned animals. Principles of Cloning (Second Edition), 33: 419-428.Search in Google Scholar

Saini M., Selokar N.L., Agrawal H., Singla S.K., Chauhan M.S., Manik R.S., Palta, P. (2006). Treatment of Buffalo (Bubalus bubalis) donor cells with trichostatin A and 5-aza-2’-deoxycytidine alters their growth characteristics, gene expression and epigenetic status of cloned embryos. Reprod. Fertil. Dev., 28(6): 824-37.Search in Google Scholar

Samiec M. (2004). Development of pig cloning studies: past, present and future. J. Anim. Feed Sci., 13 (2), 211-238.Search in Google Scholar

Samiec M. (2005a). The effect of mitochondrial genome on architectural remodeling and epigenetic reprogramming of donor cell nuclei in mammalian nuclear transfer-derived embryos. J. Anim. Feed Sci., 14 (3): 393–422.Search in Google Scholar

Samiec M. (2005b). The role of mitochondrial genome (mtDNA) in somatic and embryo cloning of mammals. A review. J. Anim. Feed Sci., 14 (2): 213–233.Search in Google Scholar

Samiec M., Skrzyszowska M. (2005a). Molecular conditions of the cell nucleus remodelling/reprogramming process and nuclear-transferred embryo development in the intraooplasmic karyoplast injection technique: a review. Czech J. Anim. Sci., 50 (5): 185–195.Search in Google Scholar

Samiec M., Skrzyszowska M. (2005b). Microsurgical nuclear transfer by intraooplasmic karyoplast injection as an alternative embryo reconstruction method in somatic cloning of pigs and other mammal species; application value of the method and its technical advantages: a review. Czech J. Anim. Sci., 50 (6): 235–242.Search in Google Scholar

Samiec M., Skrzyszowska M. (2010a). Preimplantation developmental capability of cloned pig embryos derived from different types of nuclear donor somatic cells. Ann. Anim. Sci., 10 (4): 385–398.Search in Google Scholar

Samiec M., Skrzyszowska M. (2010b). The use of different methods of oocyte activation for generation of porcine fibroblast cell nuclear-transferred embryos. Ann. Anim. Sci. 10 (4): 399–411.Search in Google Scholar

Samiec M., Skrzyszowska M. (2011a). Transgenic mammalian species, generated by somatic cell cloning, in biomedicine, biopharmaceutical industry and human nutrition/dietetics – recent achievements. Pol. J. Vet. Sci., 14 (2): 317–328.Search in Google Scholar

Samiec M., Skrzyszowska M. (2011b). The possibilities of practical application of transgenic mammalian species generated by somatic cell cloning in pharmacology, veterinary medicine and xenotransplantology. Pol. J. Vet. Sci., 14 (2), 329–340.Search in Google Scholar

Samiec M., Skrzyszowska M. (2012a). Roscovitine is a novel agent that can be used for the activation of porcine oocytes reconstructed with adult cutaneous or fetal fibroblast cell nuclei. Theriogenology, 78 (8): 1855–1867.Search in Google Scholar

Samiec M., Skrzyszowska M. (2012b). High developmental capability of porcine cloned embryos following trichostatin A-dependent epigenomic transformation during in vitro maturation of oocytes pre-exposed to R-roscovitine. Anim. Sci. Pap. Rep. 30 (4): 383–393.Search in Google Scholar

Samiec M., Skrzyszowska M., Lipiński D. (2012). Pseudophysiological transcomplementary activation of reconstructed oocytes as a highly efficient method used for producing nuclear-transferred pig embryos originating from transgenic foetal fibroblast cells. Pol. J. Vet. Sci., 15 (3): 509–516.Search in Google Scholar

Samiec M., Skrzyszowska M. (2013). Assessment of in vitro developmental capacity of porcine nuclear-transferred embryos reconstituted with cumulus oophorus cells undergoing vital diagnostics for apoptosis detection. Ann. Anim. Sci., 13 (3): 513–529.Search in Google Scholar

Samiec M., Skrzyszowska M., Opiela J. (2013a). Creation of cloned pig embryos using contact-inhibited or serum-starved fibroblast cells analysed intra vitam for apoptosis occurrence. Ann. Anim. Sci., 13 (2): 275–293.Search in Google Scholar

Samiec M., Skrzyszowska M., Bochenek M. (2013b). In vitro development of porcine nuclear-transferred embryos derived from fibroblast cells analysed cytometrically for apoptosis incidence and accuracy of cell cycle synchronization at the G0/G1 stages. Ann. Anim. Sci., 13 (4): 735–752.Search in Google Scholar

Samiec M., Skrzyszowska M. (2014). Biological transcomplementary activation as a novel and effective strategy applied to the generation of porcine somatic cell cloned embryos. Reprod. Biol., 14 (2): 128–139.Search in Google Scholar

Samiec M., Opiela J., Lipiński D., Romanek J. (2015). Trichostatin A-mediated epigenetic transformation of adult bone marrow-derived mesenchymal stem cells biases the in vitro developmental capability, quality, and pluripotency extent of porcine cloned embryos. Biomed Res. Int., 2015: 814686.Search in Google Scholar

Samiec M., Skrzyszowska M. (2018a). Can reprogramming of overall epigenetic memory and specific parental genomic imprinting memory within donor cell-inherited nuclear genome be a major hindrance for the somatic cell cloning of mammals? – a review. Ann. Anim. Sci., 18 (3): 623–638.Search in Google Scholar

Samiec M., Skrzyszowska M. (2018b). Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos. Pol. J. Vet. Sci., 21 (1): 217–227.Search in Google Scholar

Samiec M., Romanek J., Lipiński D., Opiela J. (2019). Expression of pluripotency-related genes is highly dependent on trichostatin A-assisted epigenomic modulation of porcine mesenchymal stem cells analysed for apoptosis and subsequently used for generating cloned embryos. Anim. Sci. J., 90 (9): 1127–1141.Search in Google Scholar

Saunders C.M., Larman M.G., Parrington J., Cox L.J., Royse J., Blayney L.M., Swann K., Lai F.A. (2002). PLC zeta: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129, 3533–3544.Search in Google Scholar

Schaetzlein S., Lucas-Hahn A., Lemme E., Kues W.A., Dorsch M., Manns M.P., Niemann H., Rudolph K.L. (2004). Telomere length is reset during early mammalian embryogenesis. Proc. Natl. Acad. Sci. USA, 101: 8034–8038.Search in Google Scholar

Schultz R.M. (1993). Regulation of zygotic gene activation in the mouse. Bioessays, 15: 531–538.Search in Google Scholar

Schurmann A., Wells D.N., Oback B. (2006). Early zygotes are suitable recipients for bovine somatic nuclear transfer and result in cloned offspring. Reproduction, 132 (6): 839–848.Search in Google Scholar

Selokar N.L., Saini M., Agrawal H., Palta P., Chauhan M.S., Manik R., Singla S.K. (2016). Buffalo (Bubalus bubalis) SCNT embryos produced from somatic cells isolated from frozen-thawed semen: effect of trichostatin A on the in vitro and in vivo developmental potential, quality and epigenetic status. Zygote, 4: 549–553.Search in Google Scholar

Shiels P.G., Kind A.J., Campbell K.H., Waddington D., Wilmut I., Colman A., Schnieke A.E. (1999). Analysis of telomere lengths in cloned sheep. Nature, 399: 316-317.Search in Google Scholar

Shin T.Y., Kraemer D., Pryor J., Liu L., Rugila J., Howe L., Buck S., Murphy K., Lyons L., Westhusin M. (2002). A cat cloned by nuclear transplantation. Nature, 415: 859.Search in Google Scholar

Shufaro Y., Reubinoff B.E. (2017). Nuclear treatment and cell cycle synchronization for the purpose of mammalian and primate somatic cell nuclear transfer (SCNT). Humana Press, New York, NY. Methods Mol. Biol., 1524: 289–298.Search in Google Scholar

Skrzyszowska M., Kątska L., Ryńska B., Kania G., Smorąg Z., Pieńkowski M. (2002). In vitro developmental competence of domestic cat embryos after somatic cloning: a preliminary report. Theriogenology, 58 (8): 1615–1621.Search in Google Scholar

Skrzyszowska M., Smorąg Z., Słomski R., Kątska-Książkiewicz L., Kalak R., Michalak E., Wielgus K., Lehmann J., Lipiński D., Szalata M., Pławski A., Samiec M., Jura J., Gajda B., Ryńska B., Pieńkowski M. (2006). Generation of transgenic rabbits by the novel technique of chimeric somatic cell cloning. Biol. Reprod., 74 (6): 1114–1120.Search in Google Scholar

Skrzyszowska M., Samiec M., Słomski R., Lipiński D., Mały E. (2008). Development of porcine transgenic nuclear-transferred embryos derived from fibroblast cells transfected by the novel technique of nucleofection or standard lipofection. Theriogenology, 70 (2): 248–259.Search in Google Scholar

Skrzyszowska M., Samiec M. (2020). Enhancement of in vitro developmental outcome of cloned goat embryos after epigenetic modulation of somatic cell-inherited nuclear genome with trichostatin A. Ann. Anim. Sci., 20 (1): 97–108.Search in Google Scholar

Song S.H., Lee K.L., Xu, L., Joo M.D., Hwang J.Y., Oh S.H., Kong I.K. (2019). Production of cloned cats using additional complimentary cytoplasm. Anim. Reprod. Sci., 208: 106125.Search in Google Scholar

Srirattana K., St. John J.C. (2017). Manipulating the mitochondrial genome to enhance cattle embryo development. G3 (Bethesda), 7(7): 2065–2080.Search in Google Scholar

Steinborn R., Schinogl P., Wells D.N., Bergthaler A., Muller M., Brem G. (2002). Coexistence of Bos taurus and Bos indicus mitochondrial DNAs in nuclear transfer-derived somatic cattle clones. Genetics, 162: 823–829.Search in Google Scholar

Strahl B.D., Allis C.D. (2000). The language of covalent histone modifications. Nature, 403: 41-45.Search in Google Scholar

Sullivan E.J, Kasinathan S., Kasinathan P., Robl J.M., Collas P. (2004). Cloned calves from chromatin remodeled in vitro. Biol. Reprod., 70: 146–153.Search in Google Scholar

Sun J. M., Spencer V. A., Chen H. Y., Li L., Davie J. R. (2003). Measurement of histone acetyltransferase and histone deacetylase activities and kinetics of histone acetylation. Methods, 31: 12–23.Search in Google Scholar

Suzuki T., Yoshida N., Suzuki E., Okuda E., Perry A.C. (2010). Full-term mouse development by abolishing Zn2+-dependent metaphase II arrest without Ca2+ release. Development, 137: 2659–2669.Search in Google Scholar

Tachibana M., Amato P., Sparman M., Gutierrez N.M., Tippner-Hedges R., Ma H., Kang E., Fulati A., Lee H.S., Sritanaudomchai H., Masterson K., Larson J., Eaton D., Sadler-Fredd K., Battaglia D., Lee D., Wu D., Jensen J., Patton P., Gokhale S., Stouffer R.L., Wolf D., Mitalipov S. (2013). Human embryonic stem cells derived by somatic cell nuclear transfer. Cell, 153: 1228–1238.Search in Google Scholar

Tanabe Y., Kuwayama H., Wakayama S., Nagatomo H., Ooga M., Kamimura S., Kishigami S., Wakayama T. (2017). Production of cloned mice using oocytes derived from ICR-outbred strain. Reproduction, 154 (6): 859–866.Search in Google Scholar

Tamada H., Kikyo N. (2004). Nuclear reprogramming in mammalian somatic cell nuclear cloning. Cytogenet. Genome. Res., 105: 285-291.Search in Google Scholar

Tao T., Machaty Z., Abeydeera L.R., Day B.N., Prather R.S. (2000). Optimization of porcine oocyte activation following nuclear transfer. Zygote, 8: 69–77.Search in Google Scholar

Tecirlioglu R.T., French A.J., Lewis I.M., Vajta G., Korfiatis N.A., Hall V.J., Ruddock N.T., Cooney M.A., Trounson A.O. (2003). Birth of a cloned calf derived from a vitrified hand-made cloned embryo. Reprod. Fertil. Dev., 15: 361-6.Search in Google Scholar

Tian X.C., Kubota C., Enright B., Yang X. (2003). Cloning animals by somatic cell nuclear transfer-biological factors. Reprod. Biol. Endocrinol., (13)1: 98Search in Google Scholar

Tian X.C., Xu J., Yang X. (2000). Normal telomere length found in cattle. Nat. Gene.t, 26: 272-273.Search in Google Scholar

Tong W.F., Ng Y.F., Ng S.C. (2002). Somatic cell nuclear transfer (cloning): Implications for the medical practitioner. Singapore Med. J., 43(7): 369-376.Search in Google Scholar

Vajta G. (2007). Handmade cloning: the future way of nuclear transfer? Trends Biotechnol., 25: 250-253.Search in Google Scholar

Vajta G., Holm P., Greve T., Callesen H. (1996). Overall efficiency of in vitro embryo production and vitrification in cattle. Theriogenology, 45: 683-689.Search in Google Scholar

Vajta G., Kragh P.M., Mango N.R., Callesen H. (2005). Hand-made cloning approach: potentials and limitations. Reprod. Fertil. Dev., 17(1-2): 97-112.Search in Google Scholar

Vajta G., Lewis I.M., Hyttel P., Thouas G.A., Trounson A.O. (2001). Somatic cell cloning without micromanipulators. Cloning, 3: 89-95.Search in Google Scholar

Vajta G., Peura T.T., Holm P., Paldi A., Greve T, Trounson A.O., Callesen H. (2000). New method for culture of zona-included or zona-free embryos: the well of the well (WOW) system. Mol. Reprod. Dev., 55: 256-64Search in Google Scholar

Verma G., Arora J.S., Sethi R.S., Mukhopadhyay C.S., Verma, R. (2015). Handmade cloning: recent advances, potential and pitfalls. J. Anim. Sci. Biotechnol., 6: 43.Search in Google Scholar

Wakayama S., Ohta H., Hikichi T., Mizutani E., Iwaki T., Kanagawa O., Wakayama T. (2008). Production of healthy cloned mice from bodies frozen at –20 degrees C for 16 years. Proc. Natl. Scad. Sci. U.S.A, 105: 17318-22.Search in Google Scholar

Wakayama T., Perry A.C., Zuccotti M., Johnson K.R., Yanagimachi R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 394: 369-374.Search in Google Scholar

Wakayama T., Yanagimachi R. (2001). Mouse cloning with nucleus donor cells of different age and type. Mol. Reprod. Dev., 58 (4): 376–383.Search in Google Scholar

Wang H., Cui W., Meng C., Zhang J., Li Y., Qian Y., Xing G., Zhao D., Cao S. (2018). MC1568 enhances histone acetylation during oocyte meiosis and improves development of somatic cell nuclear transfer embryos in pig. Cell Reprogram, 20 (1): 55–65.Search in Google Scholar

Wang X., Qu J., Li J., He H., Liu Z., Huan Y. (2020). Epigenetic reprogramming during somatic cell nuclear transfer: recent progress and future directions. Front. Genet., 11: 205.Search in Google Scholar

Wani N.A., Wernery U., Hassan F.A.H., Wernery R., Skidmore J.A. (2010). Production of the first cloned camel by somatic cell nuclear transfer. Biol. Reprod., 82: 373–379.Search in Google Scholar

Wilmut J., Schnieke A.E., McWhir J., Kind A.J., Campbell K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385: 810–813.Search in Google Scholar

Wong T., McGrath J.A., Navsaria H. (2007). The role of fibroblasts in tissue engineering and regeneration. Br. J. Dermatol., 156 (6): 1149–1155.Search in Google Scholar

Woods G.L., White K.L., Vanderwall D.K., Li G.P., Aston K.I., Bunch T.D., Meerdo L.N., Pate B.J. (2003). A mule cloned from fetal cells by nuclear transfer. Science, 30: 106.Search in Google Scholar

Wu C.F., Zhang D.F., Zhang S., Sun L., Liu Y., Dai J.J. (2019). Optimizing treatment of DNA methyltransferase inhibitor RG108 on porcine fibroblasts for somatic cell nuclear transfer. Reprod. Domest. Anim., 54 (12): 1604–1611.Search in Google Scholar

Xiao J., Li Q., Qu P., Zhang Z., Pan S., Wang Y., Zhang Y. (2016). Isolation of bovine skin-derived precursor cells and their developmental potential after nuclear transfer. Cell. Reprogram., 18: 411–418.Search in Google Scholar

Xu L., Mesalam A., Lee K.L., Song S.H., Khan I., Chowdhury M.M.R., Lv W., Kong I.K. (2019). Improves the in vitro developmental competence and reprogramming efficiency of cloned bovine embryos by additional complimentary cytoplasm. Cell. Reprogram., 21 (1): 51–60.Search in Google Scholar

Yamazaki Y., Low E., Marikawa Y., Iwahashi K., Bartolomei M., McCarrey J., Yanagimachi R. (2005). Adult mice cloned from migrating primordial germ cells. Microsc. Microanal., 11(S02): 122-123.Search in Google Scholar

Yang X., Wu X., Yang Y., Gu T., Hong L., Zheng E., Xu Z., Zeng F., Shi J., Zhou R., Cai G., Wu Z., Li Z. (2019). Improvement of developmental competence of cloned male pig embryos by short hairpin ribonucleic acid (shRNA) vector-based but not small interfering RNA (siRNA)-mediated RNA interference (RNAi) of Xist expression. J. Reprod. Dev., 18;65(6): 533-539.Search in Google Scholar

Yuan Y., Krisher R.L. (2012). In vitro maturation (IVM) of porcine oocytes. Wai-Yee Chann and Le Ann Blomberg (eds.), Germline Development. Methods and Protocols. Springer, New York, NY. Methods Mol. Biol., 825: 183–198.Search in Google Scholar

Zagnoni M. (2012). Miniaturised technologies for the development of artificial lipid bilayer systems. Lab Chip., 12(6): 1026–39.Search in Google Scholar

Zhang P., Liu P., Dou H., Chen L., Chen L., Lin L., Tan P., Vajta G., Gao J., Du Y., Ma R.Z. (2013). Handmade cloned transgenic sheep rich in omega-3 fatty acids. PLoS One, 8 (2): e55941.Search in Google Scholar

Zhang P., Zhang Y., Dou H., Yin J., Chen Y., Pang X., Vajta G., Bolund L., Du Y., Ma R.Z. (2012). Handmade cloned transgenic piglets expressing the nematode fat-1 gene. Cell. Reprogram., 14: 258–266.Search in Google Scholar

Zhou C., Wang Y., Zhang J., Su J., An Q., Liu X., Zhang M., Wang Y., Liu J., Zhang Y. (2019). H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency. FASEB J., 33: 4638-4652.Search in Google Scholar

Zhou Q., Renard J.P., Fries G.L., Brochard V., Beaujean N., Cherifi Y., Fraichard A., Cozzi J. (2003). Generation of fertile cloned rats by regulating oocyte activation. Science, 302: 117.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo