1. bookVolume 21 (2021): Issue 4 (October 2021)
Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

The Effect of Adding Molasses in Different Times on Performance of Nile Tilapia (Oreochromis niloticus) Raised in a Low-Salinity Biofloc System

Published Online: 28 Oct 2021
Page range: 1435 - 1454
Received: 26 Sep 2020
Accepted: 28 Jan 2021
Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

This study aimed to evaluate the effect of adding molasses in different times on water quality, growth performance, body biochemical composition, digestive and hepatic enzymes of Nile tilapia in the biofloc system. Tilapia fingerlings (1.53 ± 0.14 g) were distributed in five treatments including control, BFT24 (adding molasses to the tanks every 24 h), BFT48 (48 h), BFT72 (72 h), and BFT96 (96 h) and reared for 37 days in fiberglass tanks (130 L), with a stocking density of one fish per litre. The results showed that highest increases in biomass (740.12 g) and survival (98.97%) were obtained in BFT24 treatment (P<0.05). The body composition was affected by the experimental treatments so that the highest protein content was obtained in the BFT72 (P<0.05). Digestive enzymes activities were significantly (P<0.05) higher in BFT treatments than the control group. The current study showed higher biomass and survival ratio for Nile tilapia were observed in BFT24 treatment. The liver and digestive enzymes of Nile tilapia were affected by the different addition times of molasses to the rearing tanks.

Keywords

Adorian T. J., Jamali H., Ghafari Farsani H., Darvishi P., Hasanpour S., Bagheri T., Roozbehfar R. (2019). Effects of probiotic bacteria bacillus on growth performance, digestive enzyme activity, and hematological parameters of Asian sea bass, Lates calcarifer (Bloch). Probiotics Antimicrob. Proteins, 11: 248–255.Search in Google Scholar

Aguilera-Rivera D., Prieto-Davó A., Escalante K., Chávez C., Cuzon G., Gaxiola G. (2014). Probiotic effect of FLOC on Vibrios in the pacific white shrimp Litopenaeus vannamei. Aquaculture, 424: 215–219.Search in Google Scholar

Ahmad I., Babitha Rani A. M., Verma A. K., Maqsood M. (2017). Biofloc technology: an emerging avenue in aquatic animal healthcare and nutrition. Aquacult. Int., 25: 1215–1226.Search in Google Scholar

Alves G. F. O., Fernandes A. F. A., Alvarenga E. R., Turra E. M., Sousa A. B., Teixeira E. A. (2017). Effect of the transfer at different moments of juvenile Nile tilapia (Oreochromis niloticus) to the biofloc system in formation. Aquaculture, 479: 564–570.Search in Google Scholar

AOAC (2005). Official methods of analysis. Association of Official Analytical Chemists, INC., Arlington, Virginia, USA, p. 245.Search in Google Scholar

APHA (2005). American Water Works Association, Water Pollution Control Association. Standard Methods for the Examination of Water and Wastewater (21st ed.). American Public Health Association, Washington, DC, USA.Search in Google Scholar

Apún-Molina J. P., Santamaría-Miranda A., Luna-González A., Martínez-Díaz S. F., Rojas-Contreras M. (2009). Effect of potential probiotic bacteria on growth and survival of tilapia Oreochromis niloticus L., cultured in the laboratory under high density and suboptimum temperature. Aquac. Res., 40: 887–894.Search in Google Scholar

Avnimelech Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264: 140–147.Search in Google Scholar

Avnimelech Y. (2009). Biofloc Technology – A Practical Guide Book. 1st ed. The World Aquaculture Society, Baton Rouge, LA, USA, 182 pp.Search in Google Scholar

Avnimelech Y. (2012). Biofloc Technology – A Practical Guide Book. 2nd ed. The World Aquaculture Society, Baton Rouge, USA, 272 pp.Search in Google Scholar

Avnimelech Y., Kochba M. (2009). Evaluation of nitrogen uptake and excretion by tilapia in bio floc tanks, using 15N tracing. Aquaculture, 287: 163–168.Search in Google Scholar

Bakhshi F., Najdegerami E. H., Manaffar R., Tokmechi A., Farah K. R., Jalali A. S. (2018). Growth performance, haematology, antioxidant status, immune response and histology of common carp (Cyprinus carpio L.) fed biofloc grown on different carbon sources. Aquac. Res., 49: 393–403.Search in Google Scholar

Becerra-Dórame M., Martinez-Porchas M., Martinez-Cordova L. R., Rivas-Vega M. E., Lopez-Elias J. A., Porchas-Cornejo M. A. (2012). Production response and digestive enzymatic activity of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) intensively pre grown in microbial heterotrophic and autotrophic-based systems. Sci. World J., 723654, 6 pp.Search in Google Scholar

Bergmeyer H. U., Horder M., Rej R. (1986). International Federation of Clinical Chemistry (IFCC) Scientific Committee. J. Clin. Chem. Clin. Biochem., 24: 497–510.Search in Google Scholar

Bernfeld P. (1955). Amylase. In: Methods in Enzymology, Colowick S.P., Kaplan N.O. (eds.). Academic Press, New York, pp: 149–158.Search in Google Scholar

Chen C., Wooster G. A., Bowser P. R. (2004). Comparative blood chemistry and histopathology of tilapia infected with Vibrio vulnificus or Streptococcus iniae or exposed to carbon tetrachloride, gentamicin or copper sulfate. Aquaculture, 239: 421–443.Search in Google Scholar

Christopher M. A., Caipang H. X., Choo Z. B., Huilin H., Clara M., Lay-Yag J. L. (2015). Small-scale production of biofloc using various carbon sources for the freshwater culture of tilapia, Oreochromis sp. ABAH Bioflux, 7: 103–111.Search in Google Scholar

Colt J. (2006). Water quality requirements for reuse systems. Aquac. Eng., 34: 143–156.Search in Google Scholar

Coyle S. D., Bright L. A., Wood D. R., Neal R. S., Tidwell J. H. (2011). Performance of Pacific white shrimp, Litopenaeus vannamei, reared in zero-exchange tank systems exposed to different light sources and intensities. J. World Aquacult. Soc., 42: 687–695.Search in Google Scholar

Crab R., Kochva M., Verstraete W., Avnimelech Y. (2009). Bio-flocs technology application in over-wintering of tilapia. Aquac. Eng., 40: 105–112.Search in Google Scholar

De Schryver P., Sinha A. K., Kunwar P. S., Baruah K., Verstraete W., Boon N., De Boeck G., Bossier P. (2010). Poly-β-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Appl. Microbiol. Biotechnol., 86: 1535–1541.Search in Google Scholar

Deng M., Chen J., Gou J., Hou J., Li D., He X. (2018). The effect of different carbon sources on water quality, microbial community and structure of biofloc systems. Aquaculture, 482: 103–110.Search in Google Scholar

Deutsche Gesellschaft für Klinische Chemie (1972). Empfehlungen der deutschen Gesellschaft für Klinische Chemie. Standardisierung von Methoden zur Bestimmung von Enzymaktivitaten in biologischen flussigkeiten. (Standardizition of methods for measurement of enzymatic activities in biological fluids). Z. Klin. Chem. Klin. Biochem., 10: 182–192.Search in Google Scholar

Durigon E. G., Almeida A. P. G., Jerônimo G. T., Baldisserotto B., Emerencianoa M. G. C. (2019). Digestive enzymes and parasitology of Nile tilapia juveniles raised in brackish biofloc water and fed with different digestible protein and digestible energy levels. Aquaculture, 506: 35–41.Search in Google Scholar

Durigon E. G., Lazzari R., Uczay J., Lopes D. L. D. A., Jerônimo G. T., Sgnaulin T., Emerenciano M. G. C. (2020). Biofloc technology (BFT): Adjusting the levels of digestible protein and digestible energy in diets of Nile tilapia juveniles raised in brackish water. Aquacult. Fish., 5: 42–51.Search in Google Scholar

Ekasari J., Crab R., Verstraete W. (2010). Primary nutritional content of bio-flocs cultured with different organic carbon sources and salinity. HAYATI J. Biosci., 17: 125–130.Search in Google Scholar

Ekasari J., Rivandi D. R., Firdausi A. P., Surawidjaja E. H., Zairin M., Bossier P., De Schryver P. (2015). Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture, 441: 72–77.Search in Google Scholar

El-Sayed E. M. (2006). Tilapia Culture. CABI Publishing, Cambridge Massachusetts, USA, 275 p.Search in Google Scholar

Emerenciano M., Ballester E. L., Cavalli R. O., Wasielesky W. (2012). Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac. Res., 43: 447–457.Search in Google Scholar

Emerenciano M. G. C., Martínez-Córdova L. R., Martínez-Porchas M., Miranda-Baeza A. (2017). Biofloc technology (BFT): a tool for water quality management in aquaculture. Water Quality, InTech, London, UK, pp. 91–109.Search in Google Scholar

Garcia-Carreno F. L., Haard N. F. (1993). Characterization of proteinase classes in langostilla (Pleuroncodes planipes) and crayfish (Pacifastacus astacus) extracts. J. Food Biochem., 17: 97–113.Search in Google Scholar

García-Ríos L., Miranda-Baeza A., Coelho-Emerenciano M. G., Huerta-Rábago J. A., Osuna-Amarillas P. (2019). Biofloc technology (BFT) applied to tilapia fingerlings production using different carbon sources: Emphasis on commercial applications. Aquaculture, 502: 26–31.Search in Google Scholar

Hakim Y., Uni Z., Hulata G., Harpaz S. (2006). Relationship between intestinal brush border enzymatic activity and growth rate in tilapias fed diets containing 30% or 48% protein. Aquaculture, 257: 420–428.Search in Google Scholar

Hao L., Wang Z., Xing B. (2009). Effect of sub-acute exposure to TiO nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). J. Environ. Sci., 21: 1459–1466.Search in Google Scholar

Haridas H., Verma A. K., Rathore G., Prakash C., Banerjee P. (2017). Enhanced growth and immuno-physiological response of Genetically Improved Farmed Tilapia in indoor biofloc units at different stocking densities. Aquac. Res., 48: 4346–4355.Search in Google Scholar

Hu Z., Lee J. W., Chandran K., Kim S., Brotto A. C., Khanal S. K. (2015). Effect of plant species on nitrogen recovery in aquaponics. Bioresour. Technol., 188: 92–98.Search in Google Scholar

Iijima N., Tanaka S., Ota Y. (1998). Purification and characterization of bile salt-activated lipase from the hepatopancreas of red sea bream (Pagrus major). Fish Physiol. Biochem., 18: 59–69.Search in Google Scholar

Jenabi Haghparast R., Moghanlou K. S., Mohseni M., Imani A. (2019). Effect of dietary soybean lecithin on fish performance, hemato-immunological parameters, lipid biochemistry, antioxidant status, digestive enzymes activity and intestinal histomorphometry of pre-spawning Caspian brown trout (Salmo trutta caspius). Fish Shellfish Immunol., 91: 50–57.Search in Google Scholar

Ju Z., Forster I., Conquest L., Dominy W. (2008). Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquac. Nutr., 14: 533–543.Search in Google Scholar

Kamrani E., Sharifinia M., Hashemi S. H. (2016). Analyses of fish community structure changes in three subtropical estuaries from the Iranian coastal waters. Mar. Biodivers., 46: 561–577.Search in Google Scholar

Khanjani M. H., Sharifinia M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Rev. Aquacult., 12: 1836–1850.Search in Google Scholar

Khanjani M. H., Sajjadi M., Alizadeh M., Sourinejad I. (2016). Study on nursery growth performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) under different feeding levels in zero water exchange system. Iran. J. Fish. Sci.,15: 1465–1484.Search in Google Scholar

Khanjani M. H., Sajjadi M. M., Alizadeh M., Sourinejad I. (2017). Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquac. Res., 48: 1491–1501.Search in Google Scholar

Khanjani M. H., Alizadeh M., Sharifinia M. (2020 a). Rearing of the Pacific white shrimp, Litopenaeus vannamei in a biofloc system: The effects of different food sources and salinity levels. Aquac. Nutr., 26: 328–337.Search in Google Scholar

Khanjani M. H., Sharifinia M. Hajirezaee S. (2020 b). Effects of different salinity levels on water quality, growth performance and body composition of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultured in a zero water exchange heterotrophic system. Ann. Anim. Sci., 20: 1–16.Search in Google Scholar

Khanjani M. H., Alizadeh M., Sharifinia M. (2021 a). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquacult. Int., 29: 307–321.Search in Google Scholar

Khanjani M. H., Alizadeh M., Mohammadi M., Sarsangi Aliabad H. (2021 b). Biofloc system applied to Nile tilapia (Oreochromis niloticus) farming using different carbon sources: growth performance, carcass analysis, digestive and hepatic enzyme activity. Iran. J. Fish. Sci., 20: 490–513.Search in Google Scholar

Khatoon H., Banerjee S., Yuan G., Haris N., Ikhwanuddin M., Ambak M., Endutet A. (2016). Biofloc as a potential natural feed for shrimp postlarvae. Int. Biodeterior. Biodegrad., 113: 304–309.Search in Google Scholar

Kumolu-Johnson C. A., Ndimele P. E. (2010). Length-weight relationships and condition factors of twenty-one fish species in Ologe Lagoon, Lagos, Nigeria. Asian J. Agric. Sci., 4: 174–179.Search in Google Scholar

Lima P. C. M., Abreu J. L., Silva A. E. M., Severi W., Galvez A. O., Brito L. O. (2018). Nile tilapia fingerling cultivated in a low-salinity biofloc system at different stocking densities. Span. J. Agric. Res., 16: 612–621.Search in Google Scholar

Lin S., Mai K., Tan B. (2007). Effects of exogenous enzyme supplementation in diets on growth and feed utilization in tilapia, Oreochromis niloticus×O. aureus. Aquac. Res., 38: 1645–1653.Search in Google Scholar

Liu G., Ye Z., Liu D., Zhao J., Sivaramasamy E., Deng Y., Zhu S. (2018). Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems, Fish Shellfish Immunol., 81: 416–422.Search in Google Scholar

Long L., Yang J., Li Y., Guan C., Wu F. (2015). Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture, 448: 135–141.Search in Google Scholar

Luo G., Wang C., Liu W., Sun D., Li L., Tan H. (2014). Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422–423: 1–7.Search in Google Scholar

Márquez A. G., Demessence A., Platero-Prats A. E., Heurtau D., Horcajada P., Serre C., Chang J. S., Férey G., dela Peña-O’ Shea V. A., Boissière C., Grosso D., Sanchez C. (2012). Green microwave synthesis of MIL-100 (Al, Cr, Fe) nanoparticles for thin-film elaboration. Eur. J. Inorg. Chem., 100: 5165–5174.Search in Google Scholar

Martins G. B., da Rosa C. E., Tarouco F. M, Robaldo R. B. (2019). Growth, water quality and oxidative stress of Nile tilapia Oreochromis niloticus (L.) in biofloc technology system at different pH. Aquac. Res., 50: 1030–1039.Search in Google Scholar

Menaga M., Felixb S., Charulatha M., Gopalakannana A., Panigrahic A. (2019). Effect of in-situ and ex-situ biofloc on immune response of Genetically Improved Farmed Tilapia. Fish Shellfish Immunol., 92: 698–705.Search in Google Scholar

Minabi K., Sourinejad I., Alizadeh M., Rajabzadeh Ghatrami E., Khanjani M. H. (2020). Effects of different carbon to nitrogen ratios in the biofloc system on water quality, growth, and body composition of common carp (Cyprinus carpio L.) fingerlings. Aquacult. Int., 28: 1883–1898.Search in Google Scholar

Mirzakhani N., Ebrahimi E., Jalali S. A. H., Ekasari J. (2019). Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C:N ratios. Aquaculture, 512: 734235.Search in Google Scholar

MOOPAM (1999). Manual of oceanographic observations and pollutant analysis methods. Kuwait, ROPME, 1: 20.Search in Google Scholar

Morado C. N., Araújo F. G., Gomes I. D. (2017). The use of biomarkers for assessing effects of pollutant stress on fish species from a tropical river in Southeastern Brazil. Acta Sci., 39: 431–439.Search in Google Scholar

Najdegerami E. H., Bakhshi F., Lakani F. B. (2016). Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiol. Biochem., 42: 457–465.Search in Google Scholar

Panigrahi A., Saranya C., Sundaram M., Kannan S. V., Das R. R., Kumar R. S., Rajesh P., Otta S. (2018). Carbon: Nitrogen (C: N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish Shellfish Immunol., 81: 329–337.Search in Google Scholar

Pérez-Fuentes J. A., Hernández-Vergara M. P., Pérez-Rostro C. I., Fogel I. (2016). C:N ratios affect nitrogen removal and production of Nile tilapia Oreochromis niloticus raised in a biofloc system under high density cultivation. Aquaculture, 452: 247–251.Search in Google Scholar

Pinho S. M., Molinari D., de Mello G. L., Fitzsimmons K. M., Emerenciano M. G. C. (2017). Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecol. Eng., 103: 146–153.Search in Google Scholar

Qi Z., Zhang X. H., Boon N., Bossier P. (2009). Probiotics in aquaculture of China – current state, problems and prospect. Aquaculture, 290: 15–21.Search in Google Scholar

Ren W., Li L., Dong S., Tian X., Xue Y. (2019). Effects of C/N ratio and light on ammonia nitrogen uptake in Litopenaeus vannamei culture tanks. Aquaculture, 498: 123–131.Search in Google Scholar

Santacruz-Reyes R. A., Chien Y. H. (2012). The potential of Yucca schidigera extract to reduce the ammonia pollution from shrimp farming. Bioresour. Technol., 113: 311–314.Search in Google Scholar

Santos J. F., Soares K. L. S., Assis C. R. D., Guerra C. A. M., Lemos D., Carvalho L. B., Bezerra R. S. (2016). Digestive enzyme activity in the intestine of Nile tilapia (Oreochromis niloticus L.) under pond and cage farming systems. Fish Physiol. Biochem., 42: 1259–1274.Search in Google Scholar

Seixas Filho J. T., Oliveira M. G. A., Donzele J. L., Gomide A. T. M., Menin E. (2000). Lipase activity in the chime of three Teleostei freshwater fish. Rev. Bras. Zootec., 29: 6–14.Search in Google Scholar

Shahsavani D., Kazerani H. R., Kaveh S., Gholipour-Kanani H. (2010). Determination of some normal serum parameters in starry sturgeon (Acipenser stellatus Pallas, 1771) during spring season. Comp. Clin. Path., 19: 57–61.Search in Google Scholar

Suárez M. D., Trenzado C. E., García-Gallego M., Furné M., García-Mesa S., Domezain A., Alba I., Sanz A. (2015). Interaction of dietary energy levels and culture density on growth performance and metabolic and oxidative status of rainbow trout (Oncorhynchus mykiss). Aquac. Eng., 67: 59–66.Search in Google Scholar

Toledo T. M., Silva B. C., Vieira F. D. N., Mourino J. L. P., Seiffert W. Q. (2016). Effects of different dietary lipid levels and fatty acids profile in the culture of white shrimp Litopenaeus vannamei (Boone) in biofloc technology: water quality, biofloc composition, growth and health. Aquac. Res., 47: 1841–1851.Search in Google Scholar

Wang G., Yu E., Xie J., Yu D., Li Z., Luo W., Qiu L., Zheng Z. (2015). Effect of C:N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus. Aquaculture, 443: 98–104.Search in Google Scholar

Wang M., Lu M. (2016). Tilapia polyculture: a global review. Aquac. Res., 47: 2363–2374.Search in Google Scholar

Xu W. J., Pan L. Q. (2012). Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, 356: 147–152.Search in Google Scholar

Xu W. J., Pan L. Q. (2014). Dietary protein level and C/N ratio manipulation in zero exchange culture of Litopenaeus vannamei: Evaluation of inorganic nitrogen control, biofloc composition and shrimp performance. Aquac. Res., 45: 1842–1851.Search in Google Scholar

Yeganeh V., Sharifinia M., Mobaraki S., Dashtiannasab A., Aeinjamshid K., Borazjani J. M., Maghsoudloo T. (2020). Survey of survival rate and histological alterations of gills and hepatopancreas of the Litopenaeus vannamei juveniles caused by exposure of Margalefidinium / Cochlodinium polykrikoides isolated from the Persian Gulf. Harmful Algae, 97: 101856.Search in Google Scholar

Zhou X. X., Wang Y. B., Li W. F. (2009). Effect of probiotic on larvae shrimp (Penaeus vannamei) based on water quality, survival rate and digestive enzyme activities. Aquaculture, 287: 349–353.Search in Google Scholar

Ziaei-Nejad S., Rezaei M. H., Takami G. A., Lovett D. L., Mirvaghefi A. R., Shakouri M. (2006). The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture, 252: 516–524.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo