Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year
access type Open Access

Emissions of gaseous pollutants from pig farms and methods for its reduction – review

Published Online: 12 May 2021
Page range: -
Received: 07 Sep 2020
Accepted: 19 Feb 2021
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year

Agriculture contributes significantly to anthropogenic emissions of greenhouse gases (GHG). Livestock production, including pig production, is associated with several gaseous pollutants released into the atmosphere, including carbon dioxide (CO2), methane (CH4), ammonia (NH3) and nitrous oxide (N2O). Emissions of volatile organic compounds (VOCs), including alcohols, aldehydes, and aromatic and aliphatic hydrocarbons, as well as typically odorous pollutants, are an inseparable element of raising and breeding farm animals. These emissions can degrade local and regional air quality, contribute to surface water eutrophication and acid rain, and increase the greenhouse gas footprint of the production sector. The paper is organized as follows. First, the sources and factors influencing the level of emissions from pig houses are described. Next, the effects of dietary methods (optimization of animal diets), hygienic methods (including microclimate optimization) and technological methods (application of technological solutions) for mitigating emissions from pigs are discussed.


1. Alagawany M., Abd El-Hack M.E., El-Kholy M.S. (2016). Productive performance, egg quality, blood constituents, immune functions, and antioxidant parameters in laying hens fed diets with different levels of Yucca schidigera extract. Environ. Sci. Pollut. Res., 23: 6774–6782.Search in Google Scholar

2. Bartoš P., Dolan A., Smutný L., Šístková M., Celjak,. Šoch M., Havelka Z. (2016). Effects of phytogenic feed additives on growth performance and on ammonia and greenhouse gases emissions in growing-finishing pigs. Anim. Feed Sci. Technol., 213: 143-148.Search in Google Scholar

3. Berg W., Brunsch R., Pazsiczki I. (2006). Greenhouse gas emissions from covered slurry compared with uncovered during storage. Agr. Ecos. Environ., 112: 129-134.Search in Google Scholar

4. Bildsoe P., Adamsen A.P.S., Feilberg A. (2012). Effect of low-dose liquid ozonation on gaseous emissions from pig slurry. Biosys. Eng., 113: 86-93.Search in Google Scholar

5. Blanes-Vidal V., Hansen M.N., Pedersen S., Rom H.B. (2008). Emissions of ammonia, methane and nitrous oxide from pig houses and slurry: Effects of rooting material, animal activity and ventilation flow. Agric. Ecosyst. Environ., 124: 237-244.Search in Google Scholar

6. Calvet S., Hunt J., Misselbrook T.H. (2017). Low frequency aeration of pig slurry affects slurry characteristics and emissions of greenhouse gases and ammonia. Biosyst. Eng., 159: 121–132.Search in Google Scholar

7. Chen J., Kang B., Jiang Q., Han M., Zhao Y., Long L., Fu C., Yao K. (2018). Alpha-ketoglutarate in low-protein diets for growing pigs: effects on cecal microbial communities and parameters of microbial metabolism. Front. Microbiol., 9: 1-14.Search in Google Scholar

8. Chepete H.J., Xin H., Mendes L.B., Li H., Bailey T.B. (2012). Ammonia emission and performance of laying hens as affected by different dosages of Yucca schidigera in the diet. J. App. Poultry Res., 21. 522-530.Search in Google Scholar

9. Chmielowiec-Korzeniowska A. (2009). The concentration of volatile organic compounds (VOCs) in pig farm air. Annal. Agric. Environ. Med., 16: 249-256.Search in Google Scholar

10. Chmielowiec-Korzeniowska A., Tymczyna L., Pyrz M., Trawińska B., Abramczyk K., Dobrowolska M. (2018). Occupational exposure level of pig facility workers to chemical and biological pollutants. Ann. Agric. Environ. Med., 25: 262-267.Search in Google Scholar

11. Cho S., Hwang O., Park S. (2015). Effect of dietary protein levels on composition of odorous compounds and bacterial ecology in pig manure. Asian Austral. J. Anim. Sci., 28: 1362-1370.Search in Google Scholar

12. Colina J., Lewis A., Miller P.S. (2000). A review of the ammonia issue and pork production. Nebraska Swine Rep., 108: 24-25.Search in Google Scholar

13. Commission Implementing Decision (EU) 2017/302 of 15 February 2017 establishing best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the Council, for the intensive rearing of poultry or pigsSearch in Google Scholar

14. Dämmgen U., Schulz J., Klausing H.K., Hutchings N.J., Haenel H.D., Rösemann C. (2012). Enteric methane emissions from German pigs. Landbauforschung Volkenrode, 62: 83–96.Search in Google Scholar

15. Domagalski Z., Marek P., Sobczak J. (2012). The use of a phytotron chamber in reducing emissions of odor compounds from poultry houses. Probl. Agric. Eng., 2(76): 127-131.Search in Google Scholar

16. Eriksen J., Adamsen A.P.S., Norgaard J.V., Poulsen H.D., Jensen B.B., Petersen S.O. (2010). Emissions of sulphur-containing odorants, ammonia, and methane from pig slurry: Effects of dietary methionine and benzoic acid. J. Environ. Qual., 39: 1097-1107.Search in Google Scholar

17. Eriksen J., Nørgaard J.V., Poulsen H.V., Jansen B.B., Petersen S.O. (2014). Effects of acidifying pig diets on emissions of ammonia, methane, and sulfur from slurry during storage. J. Environ. Qual., 43: 2086-2095.Search in Google Scholar

18. Ershadi S.Z., Dias G., Heidari M.D., Pelletier N. (2020). Improving nitrogen use efficiency in crop-livestock systems: A review of mitigation technologies and management strategies, and their potential applicability for egg supply chains. J. Clean. Prod., 265: 121671-121675.Search in Google Scholar

19. Eurostat 2016. Share of agriculture to total ammonia emissions. Available online: http://ec.europa.eu/eurostat/statisticsexplained/index.php/File:Share_of_agriculture_to_total_ammonia_emissions,_(%25),_2010,_EU-27.png.Search in Google Scholar

20. Eurostat 2019. Greenhouse gas emissions by source sector (source: EEA). Available online: https://ec.europa.eu/eurostat/databrowser/view/env_air_gge/Search in Google Scholar

21. Feilberg A., Sommer S.G. (2013). Ammonia and malodorous gases: Sources and abatement technologies. In: S.G. Sommer, M.L. Christensen, T. Schmidt, and L.S. Jensen, editors, Animal manure recycling: Treatment and management. John Wiley & Sons, Chichester, UK., 153 pp.Search in Google Scholar

22. Galassi G.S., Colombini L., Malagutti G., Crovetto A., Rapetti L. (2010). Effects of high fibre and low protein diets on performance, digestibility, nitrogen excretion and ammonia emission in the heavy pig. Anim. Feed Sci. Technol., 161: 140-148.Search in Google Scholar

23. Gerber P.J., Steinfeld H., Henderson B., Mottet A., Opio C., Dijkman J., Falcucci A., Tempio G. (2013). Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome.Search in Google Scholar

24. Grela E.R., Kowalczyk-Pecka D., Hanczakowska E., Matras J. (2016). Effect of inulin and a probiotic supplement in the diet of pigs on selected traits of the gastrointestinal microbiome. Med. Weter., 72: 448-452.Search in Google Scholar

25. Guarino M., Fabbri C., Navarotto P., Valli L., Mascatelli G., Rossetti M., Mazzotta V. (2003) Ammonia, methane and nitrous oxide emissions and particulate matter concentrations in two different buildings for fattening pig. In: Commission Internationale de Génie Rural (Ed.), Proceedings of the International Symposium on Gaseous and Odour Emissions from Animal Production Facilities, Danish Institute for Agricultural Sciences Foulum, Denmark, 140–149.Search in Google Scholar

26. Guingand N., Quiniou N., Courboulay V. (2010). Comparison of ammonia and greenhouse gas emissions from fattening pigs kept either on partially slatted floor in cold conditions or on fully slatted floor in thermoneutral conditions. J. Rech. Porcine, 42, 277–284.Search in Google Scholar

27. Gungor K., Alkan-Ozkaynak A., Karthikeyan K.G., Evrendilek F., Gunasekaran S. (2016). Modeling of solubilization dynamics of manure organic matter and phosphorus as a function of pH control and enzyme supplementation. Environ. Protect. Eng., 42: 155-170.Search in Google Scholar

28. Hansen M.J., Jonassen K.E.N., Lokke M.M., Adamsen A.P.S., Feiberg A. (2016). Multivariate prediction of odor from pig production based on in-situ measurement of odorants. Atmos. Environ., 135: 50-58.Search in Google Scholar

29. Hansen M.J., Kamp J.N., Adamsen A.P.S., Feilberg A. (2020). Low-emission slurry pits for pig houses with straw application. Biosyst. Eng., 197: 56-63.Search in Google Scholar

30. Hayes E.T., Curran T.P., Dodd V.A. (2006). Odour and ammonia emissions from intensive pig units in Ireland. Bioresour. Technol., 97: 940–948.Search in Google Scholar

31. Herrero M., Thornton P.K. (2013). Livestock and global change: emerging issues for sustainable food systems. Proc. Natl. Acad. Sci. USA., 110(52): 20878-20881.Search in Google Scholar

32. Institute of Public Health and Environmental, 2004.Search in Google Scholar

33. IPCC. Guidelines for National Greenhouse Gas Inventories. (2006). Available online: www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.htmlSearch in Google Scholar

34. IPPC Directive – Integrated Pollution Prevention and Control - consolidated text, Official Journal of the EU L 24 of 29.01.2008.Search in Google Scholar

35. IPPC Directive (2008) - consolidated text, Official Journal of the EU L 24 of 29.01.2008.Search in Google Scholar

36. Janus M., Więcek J., Pietkiewicz S. (2016). Pig housing system versus greenhouse gas emissions. Anim. Sci. 55: 31–37.Search in Google Scholar

37. Jiang T., Schuchardt F., Li G.X., Guo R., Zhao Y.Q. (2011). Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. J. Environ. Sci., 23(10): 1754-1760.Search in Google Scholar

38. Journal of Laws 2010 no. 213 item 1397. Regulation of the Council of Ministers of November 9, 2010 on projects that may have a significant impact on the environment.Search in Google Scholar

39. Journal of Laws of 2007 no. 147 item 1033. Act on fertilizers and fertilization.Search in Google Scholar

40. Kai P., Pedersen P., Jensen J.E., Hansen M.N., Sommer S.G. (2008). A whole-farm assessment of the efficacy of slurry acidification in reducing ammonia emission. Eur. J. Agron., 28: 148-154.Search in Google Scholar

41. Kavolelis, B. (2006). Impact of animal housing systems on ammonia emission rates. Polish J. Environ. Stud., 15: 739–745.Search in Google Scholar

42. Koger J.B., O’Brien B.K., Burnette R.P., Kai P., van Kempen M.H.J.G., van Heugten E., van Kempen T.A.T.G. (2014). Manure belts for harvesting urine and feces separately and improving air quality in swine facilities. Livest. Sci., 162: 214-222.Search in Google Scholar

43. Korczyński M., Opaliński S., Kołacz R., Dobrzański Z., Gbiorczyk W., Szołtysik M. (2010). Chemical and biotechnological preparations for litter, manure and slurry limiting the emission of odors and toxic gases “at source”. Contemporary odor issues. Scientific and Technical Publishing House, Warsaw.Search in Google Scholar

44. Landrain B., Ramonet Y., Quillien J.P., Robin P. (2009). Impact of the installation of a V-shaped scraper under slats in a fattening piggery on performances et on ammonia and nitrous oxide emissions. J. Rech. Porc., 41: 259–264.Search in Google Scholar

45. Lindberg J.E. (2014). Fiber effects in nutrition and gut health in pigs. J. Anim. Sci. Biotechnol., 5: 5-15.Search in Google Scholar

46. Liu D., Feilberga A., Adamsena A.P.S., Jonassen K.E.N. (2011). The effect of slurry treatment including ozonation on odorant reduction measured by in-situ PTR-MS. Atmos. Environ., 45(23): 3786-3793.Search in Google Scholar

47. Maeda K., Hanajima D., Toyoda S., Yoshida N., Morioka R., Osada T. (2011). Microbiology of nitrogen cycle in animal manure compost. Microb. Biotechnol., 4(6): 700-709.Search in Google Scholar

48. Marszałek M., Kowalski Z., Makara A. (2018). Emission of greenhouse gases and odorants from pig slurry - effect on the environment and methods of its reduction. Ecol. Chem. Eng. S., 25: 383-394.Search in Google Scholar

49. Matusiak K., Gutarowska B., Borowski S. (2013). Characteristics of microorganisms capable of removing odor volatile compounds from chicken droppings. Woda Środowisko-Obszary Wiejskie, 13(41): 89-101.Search in Google Scholar

50. Mielcarek-Bocheńska P., Rzeźnik W. (2015). Odor emission factors from livestock production. Polish J. Environ. Stud., 24: 27-35.Search in Google Scholar

51. Misselbrook T., Hunt J., Perazzolo F., Provolo G. (2016). Greenhouse gas and ammonia emissions from slurry storage: impacts of temperature and potential mitigation through covering (pig slurry) or acidification (cattle slurry). J Environ. Qual., 45(5): 1520-1530.Search in Google Scholar

52. Moehn S., Bertolo R., Pencharz P., Ball R. (2004). Pattern of carbon dioxide production and retention is similar in adult pigs when fed hourly, but not when fed a single meal. BMC Physiol., 4: 4-11.Search in Google Scholar

53. Mohajan H.K. (2012). Dangerous effects of methane gas in atmosphere. Internat. J. Econom. Political Integrat., 2(1): 3-10.Search in Google Scholar

54. Monteiro D.O., Pinheiro V.M.C., Medeiros M.J.L., Machado R.M.A. (2010). Strategies for mitigation of nitrogen environmental impact from swine production. Rev. Bras. Zootecn., 39(Suppl.): 317-325.Search in Google Scholar

55. Mostafa E., Selders A., Gates R.S. (2020). Pig barns ammonia and greenhouse gas emission mitigation by slurry aeration and acid scrubber. Environ. Sci. Pollut. Res., 27(9): 9444-9453.Search in Google Scholar

56. Mroczek J.R. (2009). The use of Yucca schidiger extract in fattening pigs. Pol. Tow. Inż. Ekol., 11: 171.Search in Google Scholar

57. Naseem S., King A.J. (2018). Ammonia production in poultry houses can affect health of humans, birds, and the environment-techniques for its reduction during poultry production. Environ. Sci. Pollut. Res., 25: 15269-15293.Search in Google Scholar

58. Nowakowicz-Dębek B., Wlazło Ł., Stasińska B., Kułażyński M., Ossowski M., Krzaczek P., Bis-Wencel H. (2017). Emission of methane from intensive pig breeding. Przem. Chem., 96(11): 2353-2357.Search in Google Scholar

59. Oleksy M., Dobrzański Z., Matusiak Z., Borowski K., Korczyński M., Gutarowska B. (2015). Physicochemical and biological methods of deodorization. Theoretical and practical aspects. Przem. Chem., 1(12): 213-217.Search in Google Scholar

60. Opaliński S., Korczyński M., Szołtysik M., Kołacz R., Dobrzański Z., Gbiorczyk W. (2010). Application of mineral sorbents to filtration of air contaminated by odorous compounds. Chem. Enging. Transact., 23: 369-374.Search in Google Scholar

61. Orzi V., Riva C., Scaglia B., D’Imporzano G., Tambone F., Adani F. (2018). Anaerobic digestion coupled with digestate injection reduced odour emissions from soil during manure distribution. Sci. Total Environ., 621: 168–176.Search in Google Scholar

62. Osada T., Rom H.B., Dahl P. (1998). Continuous measurement of nitrous oxide and methane emission in pig units by infrared photoacoustic detection. Trans. ASAE., 41: 1109–1114.Search in Google Scholar

63. Papatsiros V.G., Billinis C. (2012). The prophylactic use of acidifiers as antibacterial agents in swine. Antimicrobial agents, V. Bobbarala (Eds.), InTech, Rijeka, Croatia 295.Search in Google Scholar

64. Petersen S., Andersen A., Jørgen E. (2012). Effects of cattle slurry acidification on ammonia and methane evolution during storage. J. Environ. Qual., 41: 88-94.Search in Google Scholar

65. Pezzuolo A., Sartori C., Vigato E., Guercini S. (2019). Effect of litter treatment with probiotic bacteria on ammonia reduction in commercial broiler farm. Eng. Rural Dev. 22-24: 1631-1635.Search in Google Scholar

66. Philippe F., Cabaraux J., Nicks B. (2011). Ammonia emissions from pig houses: Influencing factors and mitigation techniques. Agric. Ecos. Environ., 141: 245-260.Search in Google Scholar

67. Philippe F., Nicks B. (2015). Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agric. Ecosys. Environ., 199: 10-25.Search in Google Scholar

68. Philippe F.X., Nicks B. (2014). Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agric. Ecosyst. Environ., 199: e10-e25.Search in Google Scholar

69. Pierce K.M., Callan J.J., Mccarthy P., O’doherty J.V. (2005). Performance of weanling pigs offered low or high lactose diets supplemented with avilamycin or inulin. Anim. Sci., 80: 313-318.Search in Google Scholar

70. Recharla N., Kim K., Park J., Jeong I., Jeong Y., Lee H., Hwang O., Ryu J., Baek Y., Oh Y., Park S. (2017). Effects of amino acid composition in pig diet on odorous compounds and microbial characteristics of swine excreta. J. Anim. Sci. Technol., 59: 28-36.Search in Google Scholar

71. Roberfroid M., Gibson G.R., Hoyles L., Mccartney A.L., Rastall R., Rowland I., Wolvers D., Watzl B., Szajewska H., Stahl B., Guarner F., Respondek F., Whelan K., Coxam V., Davicco M.J., Léotoing L., Wittrant Y., Delzenne N.M., Cani, P.D., Neyrinck A.M., Meheust A. (2016). Prebiotic effects: metabolic and health benefits. Br. J. Nutr., 104: 1-63.Search in Google Scholar

72. Rodriguez M.R., Losada E., Besteiro R., Arango T., Velo R., Ortega J.A., Fernandez, M.D. (2020). Evolution of NH3 concentrations in weaner pig buildings based on setpoint temperature. Agronomy, 10(1): 107-114.Search in Google Scholar

73. Rütting T., Aronsson H., Delin S. (2018). Efficient use of nitrogen in agriculture. Nutr. Cycl. Agroecosyst., 110: 1-5.Search in Google Scholar

74. Saeed M., Arain M.A., Naveed M., Alagawany M., El-Hack M.E.A., Bhutto Z.A., Chao S. (2018). Yucca schidigera can mitigate ammonia emissions from manure and promote poultry health and production. Environ. Sci. Pollut. Res., 25: 1-7.Search in Google Scholar

75. Sajeev E.P.M., Winiwarter W., Amon B. (2017). Greenhouse gas and ammonia emissions from different stages of liquid manure management chains: Abatement options and emission interactions. J. Environ. Qual., 30: 30-40.Search in Google Scholar

76. Sapek A. (2013). Non-agricultural sources of ammonia emissions to the atmosphere. Woda Środowisko-Obszary Wiejskie., 13(2): 95-110.Search in Google Scholar

77. Sommer S.G., Zhang G.Q., Bannink A., Chadwic D., Misselbrook T., Harrison R., Hutchings N.J., Menzi H., Monteny G.J., Ni J.Q., Oenema O., Webb J. (2006). Algorithms determining ammonia emission rom buildings housing cattle and pigs and from manure stores. Adv. Agron., 89: 261-335.Search in Google Scholar

78. Sun G., Guo H.Q., Peterson J., Predicala B., Lague C. (2008). Diurnal odor, ammonia, hydrogen sulfide, and carbon dioxide emission profiles of confined swine grower/finisher rooms. J. Air Waste Manage. Assoc., 58: 1434–1448.Search in Google Scholar

79. Swamy Y.V., Venkanna R., Nikhil G.N., Chitanya D.N.S.K., Sinha P.R., Ramakrishna M., Rao A.G. (2012). Impact of nitrogen oxides, volatile organic compounds and black carbon on atmospheric ozone levels at a semiarid urban site in hyderabad. Aerosol Air Qual. Res., 12: 662–671.Search in Google Scholar

80. Syp A. (2017). Greenhouse gas emissions from agriculture between 1990 and 2014. Problems of World Agriculture, 17: 244-255.Search in Google Scholar

81. Tako E., Glahn R.P., Welch R.M., Lei X., Yasuda K., Miller D.D. (2008). Dietary inulin affects the expression of intestinal enterocyte iron transporters, receptors and storage protein and alters the microbiota in the pig intestine. Br. J. Nutr., 99: 478-480.Search in Google Scholar

82. Tymczyna L., Chmielowiec-Korzeniowska A., Drabik A. (2009). Effect of pig confinement housing system on emission of gaseous air pollutants. Przem. Chem., 88(5): 574-578.Search in Google Scholar

83. Tymczyna L., Chmielowiec-Korzeniowska A., Drabik A., Raczyńska J. (2010). Biofiltration of volatile organic compounds (VOC) in the exhaust air of a fattening house. Przem. Chem., 89(4): 567-573.Search in Google Scholar

84. Valenzuela-Grijalva N.V., Pinelli-Saavedra A., Muhlia-Almazan A., Domínguez-Díaz D., González-Ríos H. (2017). Dietary inclusion effects of phytochemicals as growth promoters in animal production. J. Anim. Sci. Technol., 59: 1-17.Search in Google Scholar

85. Van De Wiele T., Boon N., Possemiers S., Jacobs H., Verstraete W. (2007). Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J. Appl. Microbiol., 102: 452-460.Search in Google Scholar

86. Van Der Heyden C., Demeyer P., Volcke E.I. (2015). Mitigating emissions from pig and poultry housing facilities through air scrubbers and biofilters: State-of-the-art and perspectives. Biosys. Eng., 134: 74-93.Search in Google Scholar

87. Walczak J. (2017). The importance of zootechnical sciences in environmental protection and combating climate change. National results of research and assessment activities in the field of environmental protection and climate change. in the agriculture sector. National Research Institute, Krakow.Search in Google Scholar

88. Wang K., Huang D., Ying H., Luo H. (2014). Effects of acidification during storage on emissions of methane, ammonia, and hydrogen sulfide from digested pig slurry. Biosyst. Eng., 122: 23-30.Search in Google Scholar

89. Wang K., Wei B., Zhu S., Ye Z. (2011). Ammonia and odouremitted from deep litter and fully slatted floor systems for growing-finishing pigs. Biosys. Enging., 109: 203-210.Search in Google Scholar

90. Wang Y., Li X., Yang J., Tian Z., Sun Q., Xue W., Dong H. (2018). Mitigating greenhouse gas and ammonia emissions from beef cattle feedlot production: A system meta-analysis. Environ. Sci. Technol., 52: 11232–11242.Search in Google Scholar

91. Webb J., Broomfielda M., Jones B.S., Donovan B. (2014). Ammonia and odour emissions from UK pig farms and nitrogen leaching from outdoor pig production. A review. Sci. Total Environ., 470: 865-875.Search in Google Scholar

92. Webb J., Pain B., Bittman S., Morgan J. (2010). The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response - a review. Agric. Ecos. Environ., 137: 39-46.Search in Google Scholar

93. Zhang Z.F., Kim I.H. (2014). Effects of multistrain probiotics on growth performance, apparent ileal nutrient digestibility, blood characteristics, cecal microbial shedding, and excreta odor contents in broilers. Poult. Sci., 93(2): 364-370.Search in Google Scholar

94. Ziemann P.J., Atkinson R. (2012). Kinetics, products, and mechanisms of secondary organic aerosol formation. Chem. Soc. Rev., 41: 6582–6605.Search in Google Scholar

95. Zong C., Li H., Zhang G. (2015). Ammonia and greenhouse gas emissions from fattening pig house with two types of partial pit ventilation systems. Agric. Ecosyst. Enviro., 208: 94-105.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo