1. bookAHEAD OF PRINT
Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

The first insights on trans-galactooligosaccharide effects on fatty acids profile and microstructure of muscle in common carp

Published Online: 29 May 2021
Page range: -
Received: 04 Feb 2021
Accepted: 22 Apr 2021
Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The aim of the study was to determine the effects of prebiotic GOS on muscle histomorphometry and the total lipid, total cholesterol content and fatty acids profile in the meat of common carp. The 60-day-long experiment was performed on one-year-old fish. Three diets were used in the experiment: control diet 1 (C) with no microbiota affecting feed additives, diet 2 (B1) with 1 % of GOS, and diet 3 (B2) with 2 % of GOS. At the end of the trial, 16 individuals from each treatment group were used for the analyses. Fish meat from the B1 group had significantly higher lipid content compared to B2, but neither B1 nor B2 groups were different from the control group. The percentages of SFA, MUFA, PUFA, indexes n-3/n-6, PUFA/SFA, AI and TI, and total cholesterol content were not affected, in contrast to C14:0, C16:1 n-7, C18:0, C18:2 n-6, C20:4 n-6, and total n-6 FA. GOS significantly increased the percentage of normal fibres, while the lower number of fibre atrophy and splitting were observed. The results confirm that diet supplemented with 2 % GOS may be recommended as feed additive in carp nutrition due to positive effects on some fatty acids profiles and muscle microstructure.

Keywords

Akhter N., Wu B., Memon A.M., Mohsin M. (2015). Probiotics and prebiotics associated with aquaculture: A review. Fish Shellfish Immunol, 45, 733-741.Search in Google Scholar

Biggs P., Parsons CM., Fahey GC. (2007). The effects of several oligosaccharides on growth performance, nutrient digestibilities, and cecal microbial populations in young chicks. Poult Sci, 86 (11):2327–36.Search in Google Scholar

Banerjee G., Ray A.K. (2017). Bacterial symbiosis in the fish gut and its role in health and metabolism. Symbiosis, 72:1–11. https://doi.org/10.1007/s13199-016-0441-8Search in Google Scholar

Bogucka J., Miguel Ribeiro D., Da Costa R.P.R., Bednarczyk, M. (2018) Effect of synbiotic dietary supplementation on histological and histopathological parameters of Pectoralis Major muscle of broiler chickens. Czech J Anim Sci, 63(7): 263-271.Search in Google Scholar

Bornet F.R.J., Brouns F., Tashiro, Y., Duvillier V. (2002). Nutritional aspects of short-chain fructooligosaccharides: natural occurrence, chemistry, physiology and health implications. Dig Liver Dis, 34 (2), 6111-20.Search in Google Scholar

Cao H., Yu R., Zhang Y., Hu B., Jian S., Wen Ch., Kajbaf K., Kumar V., Yang, G. (2019). Effects of dietary supplementation with β-glucan and Bacillus subtilis on growth, fillet quality, immune capacity, and antioxidant status of Pengze crucian carp (Carassius auratus var. Pengze). Aquacult, 508, 106-112. https://doi.org/10.1016/j.aquaculture.2019.04.064Search in Google Scholar

Carani F. R., Duran B.O., Da Silva., Paula Tassiana G. D.P., Warlen P., Dal-Pai-Silva Maeli. (2013). Morphology and expression of genes related to skeletal muscle growth in juveniles of pirarucu (Arapaima gigas, Arapaimatidae, Teleostei). Acta Sci., Anim. Sci, 35(3), 219-226. https://dx.doi.org/10.4025/actascianimsci.v35i3.18219Search in Google Scholar

Dawood MAO., Koshio S. (2016). Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquacult, 454:243—251. https://doi.org/10.1016/j.aquaculture.2015.12.033Search in Google Scholar

Delzenne N.M., Kok N. (2001). Effects of fructans-type prebiotics on lipid metabolism. Am J Clin Nutr, 73, 456S–8S.Search in Google Scholar

Delzenne N.M., Daubioul C., Neyrinck A., Lasa M., Taper H.S. (2002). Inulin and oligofructose modulate lipid metabolism in animals: review of biochemical events and future prospects. Br. J. Nutr, 87(2), 255–259. https://doi.org/10.1079/BJN/2002545Search in Google Scholar

De Silva S.S., Anderson T.A. (1995). Fish Nutrition in Aquaculture. Chapmann & Hall, London, 319 pp.Search in Google Scholar

Demigné C., Morand C., Levrat M., Besson C., Moundras C., Rémésy C. (1995). Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Br. J. Nutr, 74(2), 209-219. https://doi.org/10.1079/BJN19950124Search in Google Scholar

Dimitroglou A., Merrifield D.L., Spring P., Sweetman J., Moate R., Davies S.J. (2010). Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilisation, intestinal histology and gut microbiota of gilthead seabream (Sparus aurata). Aquacult, 300:182-188.Search in Google Scholar

Ebrahimi G., Ouraji H., Khalesi M., Sudagar M., Barari A., Zarei Dangesaraki M., Jani Khalili K. (2012). Effects of a prebiotic, Immunogen®, on feed utilization, body composition, immunity and resistance to Aeromonas hydrophila infection in the common carp Cyprinus carpio (Linnaeus) fingerlings. J Anim Physiol a Anim Nutr, 96, 591–599.Search in Google Scholar

FAO, Fisheries and Aquaculture, National Aquaculture Sector Overview – Poland, 2020. http://www.fao.org/fishery/countrysector/naso_poland/enSearch in Google Scholar

Folch J., Lees M., Sloane-Stanley G.H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Bio. Chem, 226, 497-509.Search in Google Scholar

Gibson GR., Hutkins R., Sanders ME. et al. (2017). Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 14: 491.Search in Google Scholar

Godfray H.C.J., Beddington J.R., Crute I.R., Haddad L., Lawrence D., Muir J.F., Pretty, J., Robinson S.R., Thomas S.M., Toulmin C. (2010). Food security: the challenge of feeding billion people. Science, 327, 812 – 818.Search in Google Scholar

Grisdale-Helland B., Helland S., Gatlin D. (2008). The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquacult, 283, 163-167. https://doi.org/10.1016/j.aquaculture.2008.07.012Search in Google Scholar

Guerreiro I., Olivia-Teles A., Enes P. (2015). Improved glucose and lipid metabolism in European sea bass (Dicentrarchus labrax) fed short-chain fructooligosaccharides and xylooligosaccharides. Aquacult, 441, 57-63. https://doi.org/10.1016/j.aquaculture.2015.02.015Search in Google Scholar

Guerreiro I., Oliva-Teles A., Enes P. (2017a). Prebiotics as functional ingredients: focus on Mediterranean fish aquaculture. Reviews in Aquacult, 0, 1–33. https://doi.org/10.1111/raq.12201Search in Google Scholar

Guerreiro I., Serra CR., Pousão-Ferreira P., Oliva-Teles A., Enes, P. (2017b). Prebiotcs effect on growth performance, hepatic intermediary metabolism, gut microbiota and digestive enzymes of white sea bream (Diplodus sargus). Aquacult Nutrit, 24,1, 153-163. https://doi.org/10.1111/anu.12543Search in Google Scholar

Guillen J., Natale F., Carvalho N., Casey J., Hofherr J., Druon J.-N., Martinsohn J. T. (2019). Global seafood consumption footprint. Ambio, 48(2), 111–122. https://doi.org/10.1007/s13280-018-1060-9Search in Google Scholar

Harper C., Wolf JC. (2009). Morphologic effects of the stress response in fish. ILAR J, 50(4):387-96. https://doi.org/10.1093/ilar.50.4.387Search in Google Scholar

Hocquette J.F., Gondret F., Baez E., Medale F., Jurie C., Pethick D.W. (2010). Intramuscular fat content in meat-producing animals: development, genetic and nutritional control and identification of putative markers. Animal, 4, 303–319. https://doi.org/10.1017/S1751731109991091Search in Google Scholar

Hoffmann L., Mazurkiewicz J., Florczyk K., Burchardt H. (2017). Using probiotic feed supplements in carp rearing. Komunikaty Rybackie, 2(157), 14 – 21.Search in Google Scholar

Hoffmann L., Rawski M., Nogales-Merida S., Mazurkiewicz J. (2020). Dietary inclusion of Tenebrio molitor meal in sea trout larvae rearing: Effects on fish growth performance, survival, condition, and GIT and liver enzymatic activity. Ann. Anim. Sci, 20,2. https://doi.org/10.2478/aoas-2020-0002Search in Google Scholar

Hoseinifar S.H., Ahmadi A., Raeisi M., Hoseini S.M., Khalili M., Behnampour N. (2016). Comparative study on immunomodulatory and growth enhancing effects of three prebiotics (galactooligosaccharide, fructooligosaccharide and inulin) in common carp (Cyprinus carpio). Aquac. Res, 48(7), 3298–3307. https://doi.org/10.1111/are.13156Search in Google Scholar

Horváth L., Tamás G., Seagrave C. (2002). Carp and pond fish culture, 2nd ed.; Blackwell Science: Oxford, UK.Search in Google Scholar

Hugh A., Poston Gerald F., Combs Jr., Louis L. (1976). Vitamin E and Selenium Interrelations in the Diet of Atlantic Salmon (Salmo salar): Gross, Histological and Biochemical Deficiency Signs, J Nutr, 106, 7,892–904, https://doi.org/10.1093/jn/106.7.892Search in Google Scholar

Hussein MS., Zaghlol A., Abd El Hakim NF., El Nawsany M., Abo-State HA. (2016). Effect of different growth promoters on growth performance, feed utilization and body composition of common carp (Cyprinus carpio). J Fish Aquat Sci, 11: 370-377.Search in Google Scholar

Jackson K.G., Lovegrove J.A. (2012). Impact of probiotics, prebiotics and synbiotics on lipid metabolism in humans. J. Nutr. Health Aging, 1, 181–200.Search in Google Scholar

Johnston I. A., Ward P. S., Goldspink G.(1975). Studies on the swimming musculature of the rainbow trout I. Fibre types. J. Fish Biol, 7, 451-458.Search in Google Scholar

Józefiak A., Nogales-Merida S., Rawski M., Kierończyk B., Mazurkiewicz J. (2019). Effects of insect diets on the gastrointestinal tract health and growth performance of Siberian sturgeon (Acipenser baerii Brandt, 1869). BMC Vet. Res, 15. https://doi.org/10.1186/s12917-019-2070-ySearch in Google Scholar

Karahmet E., Viles A., Katica A., Mlaco N., Toroman A. (2014). Differences between white and red muscle fibres diameter in three salmon fish species. Biotechnol. Anim. Husb, 30(2), 349–356. https://doi.org/10.2298/bah1402349kSearch in Google Scholar

Kindt et al. (2018). The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nat. Commun, 9:3760, 1-15, https://doi.org/10.1038/s41467-018-05767-4Search in Google Scholar

Kinsella J.E. (1986). Food component with potential benefits: the n-3polyunsaturated fatty acids of fish oils. Food Technol, 40(2), 89-97.Search in Google Scholar

Kris-Etherton P.M., Taylor D.S., Yu-Poth S., Huth P., Moriarty K., Fishell V., Hargrove R.L., Zhao G., Etherton T.D. (2000). Polyunsaturated fatty acids in the food chain in the United States. Am. J. Clin. Nutr, 71, 179–188.Search in Google Scholar

Kurdomanov A., Sirakov I., Stoyanova S., Velichkova K., Nedeva I., Staykov Y. (2019). The effect of diet supplemented with Proviotic® on growth, blood biochemical parameters and meat quality in rainbow trout (Oncorhynchus mykiss) cultivated in recirculation system. AACL Bioflux, 12(2).Search in Google Scholar

Leaf A., Kang J.X., Xiao Y.F., Billman G.E. (2003). Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish oils. Circulation, 107(21), 263-264.Search in Google Scholar

Leary S., Underwood W., Anthony R., Cartner S. (2013). AVMA Guidelines for the Euthanasia of Animals: 2013 Edition; AVMA: Schaumburg, IL, USA, pp. 67–73.Search in Google Scholar

Levitan E.B., Wolk A., Mittleman M.A. (2010). Fatty fish, marine ω-3 fatty acids and incidence of heart failure. Eur. J. Clin. Nutr., 64(6), 587–594. https://doi.org/10.1038/ejcn.2010.50.Search in Google Scholar

Listrat A., Bénédicte L., Louveau I., Astruc T., Bonnet M., Lefaucheur L., Picard B., Bugeon J. (2016). How muscle structure and composition influence meat and flesh quality. Sci. World J, 14. https://doi.org/10.1155/2016/3182746Search in Google Scholar

Lockyer S., Stanner S. (2019). Prebiotics – an added benefit of some fibre types. Nutrition Bulletin, 44: 74–91. Macfarlane S., Macfarlane G.T., Cummings J. (2006). Review Article: Prebiotics in the gastrointestinal tract. Aliment. pharmacol ther, (24), 701-14. https://doi.org/10.1111/j.1365-2036.2006.03042.x.Search in Google Scholar

Maharajana A., Rufus Kitto M., Paruruckumania P.S., Ganapiriyaa V. (2016). Histopathology biomarker responses in Asian sea bass, Lates calcarifer (Bloch) exposed to copper. JOBAZ, 77, 21 – 30Search in Google Scholar

Mansour M.R., Akrami R., Ghobadi S.H., Amani Denji K., Ezatrahimi N., Gharaei A. (2012). Effect of dietary mannan oligosaccharide (MOS) on growth performance, survival, body composition, and some hematological parameters in giant sturgeon juvenile (Huso huso Linnaeus, 1754). Fish Physiol. Biochem, 38, 829–835. https://doi.org/10.1007/s10695-011-9570-4Search in Google Scholar

Macfarlane S., Macfarlane G.T., Cummings J. (2006). Review Article: Prebiotics in the gastrointestinal tract. Aliment. Pharmacol. Ther, (24), 701-14. https://doi.org/10.1111/j.1365-2036.2006.03042.x.Search in Google Scholar

Maraschiello C., Diaz I., Garcia Regueiro J.A. (1996). Determination of cholesterol in fat and muscle of pig by HPLC and capillary gas chromatography with solvent venting injection. HRC CC J High Resolut Chromatogr Chromatogr Commun, 19, 165–168.Search in Google Scholar

Markowiak P., Śliżewska K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathog, 10, 21. https://doi.org/10.1186/s13099-018-0250-0Search in Google Scholar

Mazurkiewicz J., Przybył A., Golski J. (2008). Usability of fermacto prebiotic in feeds for common carp (Cyprinus carpio L.) fry. Nauka Przyroda Technologie, (2), 3.Search in Google Scholar

Miyatake, H. (1997). Carp. Yoshoku, 34(5), 108-111. (in Japanese).Search in Google Scholar

Moreira A.B., Visentainer J.V., De Souza N.E., Matsushita M. (2001). Fatty acids profile and cholesterol contents of three Brazilian Brycon freshwater fishes. J Food Compost Anal, 14(6), 565–574. https://doi.org/10.1006/jfca.2001.1025Search in Google Scholar

Mousavi E., Mohammadiazarm H., Mousavi SM., Ghatrami ER. (2016). Effects of inulin, savory and onion powders in diet of juveniles carp Cyprinus carpio (Linnaeus 1758) on gut microflora, immune response and blood biochemical parameters. TrJFAS, 16:831-838.Search in Google Scholar

Munir M.B., Hashim R., Manaf M.S.A., Nor S.A.M. (2016). Dietary prebiotics and probiotics influence the growth performance, feed utilization, and body indices of snakehead (Channa striata) fingerlings. Trop. Life Sci. Res, 27, 111–125.Search in Google Scholar

NRC. (2011). Nutrient Requirement of Fish and Shrimp. Animal Nutrition Series. The National Academies Press, Washington, DC.Search in Google Scholar

Piccolo G., Centoducati G., Bovera F., Marrone R., Nizza A. (2013). Effects of mannan oligosaccharide and inulin on sharpsnout seabream (Diplodus puntazzo) in the context of partial fish meal substitution by soybean meal. Ital. J. Anim. Sci, 12, 133-138. https://doi.org/10.4081/ijas.2013.e22Search in Google Scholar

Piironen V., Toivo J., Lampi A. M. (2002). New data for cholesterol contents in meat, fish, milk, eggs and their products consumed in Finland. J Food Compost Anal, 15, 705–713.Search in Google Scholar

Pokusaeva K., Fitzgerald G.F., Sinderen D. (2011). Carbohydrate metabolism in Bifidobacteria. Genes Nutr, 6(3), 285.Search in Google Scholar

Priester C., Lindsay C. M., Stephen T. K., Wade O. W., Richard M. D. (2011). Growth patterns and nuclear distribution in white muscle fibres from black sea bass, Centropristis striata: evidence for the influence of diffusion. J. Exp. Biol, 214, 1230-1239. https://doi.org/10.1242/jeb.053199Search in Google Scholar

Puchała R., Pilarczyk M. (2007). The influence of nutrition on the chemical composition of carp meat. Inż Rol, 5(93), 363-368. https://ir.ptir.org/artykuly/pl/93/IR(93)_1852_pl.pdf (in Polish with abstract in English)Search in Google Scholar

Rabah S. (2005). Light microscope study of Oncorhynchus kisutch muscle development. Egypt. J. Aquat. Res, 31,1.Search in Google Scholar

Schmidt E.B., Arnesen H., de Caterina R., Rasmussen L.H., Kristensen S.D. (2005). Marine n-3 polyunsaturated fatty acids and coronary heart disease: Part I. Background, epidemiology, animal data, effects on risk factors and safety. Thromb. Res, 115(3), 163-170.Search in Google Scholar

Scholz-Ahrens KE., Ade P., Marten B., Weber P., Timm W., Aςil Y., Gluer CC., Schrezenmeir J. (2007). Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. JN, 137: 838S–846S.Search in Google Scholar

Steffens W., Wirth M. (2005). Freshwater fish - An important source of n-3 polyunsaturated fatty acids: A review. Arch. Polish Fish, 13(1), 5-16.Search in Google Scholar

Steffens W., Wirth M. (2007). Influence of nutrition on the lipid quality of pond fish: common carp (Cyprinus carpio) and tench (Tinca tinca). Aquac Int, 15, 313–319. https://doi.org/10.1007/s10499-007-9088-zSearch in Google Scholar

Sun W., Li X., Xu H., Chen J., Xu X., Leng X. (2017). Effects of dietary geniposide on growth, flesh quality, and lipid metabolism of Grass carp, Ctenopharyngodon Idella. J World Aquac Soc, 48(6), 927-937. https://doi.org/10.1111/jwas.12412Search in Google Scholar

Takeuchi T., Satoh S., Kiron V. (2002). Common carp, Cyprinus carpio. In: Nutrient Requirements and Feeding of Finfish for Aquaculture (eds. C.D. Webster and C Lim.) CABI Publishing, New York, 245-261.Search in Google Scholar

Talpur A.D., Munir M.B., Mary A., Hashim R. (2014). Dietary probiotics and prebiotics improved food acceptability, growth performance, hematology and immunological parameters and disease resistance against Aeromonas hydrophila in snakehead (Channa striata) fingerlings. Aquacult, 426, 14-20.Search in Google Scholar

Tavaniello S., Maiorano G., Stadnicka K., Mucci R., Bogucka J., Bednarczyk M. (2018). Prebiotics offered to broiler chicken exert positive effect on meat quality traits irrespective of delivery route. Poult. Sci. J, 97, 2979–2987.Search in Google Scholar

Topic Popovic N., Strunjak-Perovic I., Coz-Rakovac R., Barisic J., Jadan M., Persin Berakovic A., Sauerborn Klobucar R. (2012). Tricaine methane-sulfonate (MS-222) application in fish anaesthesia. J. Appl. Ichthyol, 28, 553–564.Search in Google Scholar

Tzortzis G., Goulas A.K., Gibson G.R. (2005). Synthesis of prebiotic galactooligosaccharides using whole cells of a novel strain, Bifidobacterium bifidum NCIMB 41171. Appl. Microbiol. Biotechnol., 68(3), 412-6. https://doi.org/10.1007/s00253-005-1919-0Search in Google Scholar

Ulbricht T.L.V., Southgate D.A.T. (1991). Coronary heart disease: seven dietary factors. Lancet, 338, 985-992.Search in Google Scholar

Velasco S., Ortiz L. T., Alzueta C., Rebole A., Trevino J., Rodriguez M. L. (2010). Effect of inulin supplementation and dietary fat source on performance, blood serum metabolites, liver lipids, abdominal fat deposition, and tissue fatty acid composition in broiler chickens. Poult. Sci. J, 89, 1651–1662. https://doi.org/10.3382/ps.2010-00687Search in Google Scholar

Wang J., Zhang D., Sun Y., Wang S., Li P., Gatlin D.M., Zhang L. (2016). Effect of a dairy-yeast prebiotic (GroBiotic-A) on growth performance, body composition, antioxidant capacity and immune functions of juvenile starry flounder (Platichthys stellatus). Aquac. Res, 47, 398–408. https://doi:10.1111/are.12501Search in Google Scholar

Wang K., Wang E., Qin Z., Zhou Z., Geng Y., Chen D. (2016). Effects of dietary vitamin E deficiency on systematic pathological changes and oxidative stress in fish. Oncotarget, 20;7(51):83869-83879. https://doi.org/doi.org/10.18632/oncotarget.13729Search in Google Scholar

Wang R-F., An X-P., Wang Y. et al. (2020). Effects of polysaccharide from fermented wheat bran on growth performance, muscle composition, digestive enzyme activities and intestinal microbiota in juvenile common carp. Aquacult Nutr, 00:1–12. https://doi.org/10.1111/anu.13067Search in Google Scholar

Weatherley A., Gill H. (1989). The role of muscle in determining growth and size in teleost fish. Experientia, 45, 875–878.Search in Google Scholar

Zhu T., Corraze G., Plagnes-Juan E., Quillet E., Dupont-Nivet M., Skiba-Cass S. (2018). Regulation of genes related to cholesterol metabolism in rainbow trout (Oncorhynchus mykiss) fed a plant-based diet. Am. J. Physiol. Regul. Integr. Comp. Physiol., 314: R58–R70. https://doi:10.1152/ajpregu.00179.2017Search in Google Scholar

Zimmerman A.M.A., Lowery M.S. (1999). Hyperplastic development and hypertrophic growth of muscle fibres in the White Seabass (Atractoscion nobilis). J. Exp. Zool, 284, 299-308. https://doi.org/10.1002/(SICI)1097-010X(19990801)284:3<299::AID-JEZ7>3.0.CO;2-6Search in Google Scholar

Ziółkowska E., Bogucka J., Dankowiakowska A., Rawski M., Mazurkiewicz J., Stanek M. (2020). Effects of a trans-galactooligosaccharide on biochemical blood parameters and intestine morphometric parameters of common carp (Cyprinus carpio L.). Animals, 10(4), 723. https://doi.org/10.3390/ani10040723Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo