1. bookAHEAD OF PRINT
Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Effects of sex steroid receptor agonists and antagonists on the expression of the FOXL2 transcription factor and its target genes AMH and CYP19A1 in the neonatal porcine ovary

Published Online: 29 May 2021
Page range: -
Received: 02 Feb 2021
Accepted: 14 May 2021
Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Recently, we have demonstrated that neonatal exposure to androgen and estrogen agonists or antagonists influenced the number of ovarian follicles in piglets. Since the FOXL2 transcription factor is required for proper ovarian follicle formation and activation, the objective of the study was to examine effects of exposure of the neonatal porcine ovary to testosterone propionate (TP; an androgen), flutamide (FLU; an antiandrogen), 4-tert-octylphenol (OP; compound with estrogenic activity), ICI 182,780 (ICI; an antiestrogen), and methoxychlor (MXC; compound with estrogenic, antiestrogenic and antiandrogenic properties) on FOXL2 expression and expression of its target genes, AMH and CYP19A1. Piglets were injected subcutaneously with TP, FLU, OP, ICI, MXC, or corn oil (control) between postnatal days 1 and 10 (n = 4/each group). Ovaries were excised from the 11-day-old piglets and the expression of FOXL2, AMH and CYP19A1 were examined using immunohistochemistry and/or real-time PCR and Western blot. FOXL2 was localized in stroma cells surrounding egg nests and in granulosa cells. TP, OP and MXC increased both FOXL2 and AMH mRNAs, while FLU and ICI decreased CYP19A1 mRNA. The increased FOXL2 protein abundance was found in all examined groups. In addition, TP, OP, ICI and MXC increased AMH protein abundance, while TP, FLU and OP decreased CYP19A1 protein abundance. In conclusion, neonatal exposure to sex steroid receptor agonists and antagonists increased FOXL2 expression at mRNA and/or protein levels and affected FOXL2 target genes in the ovaries of 11-day-old piglets. Therefore, it seems that impaired ovarian folliculogenesis induced by altered steroid milieu during the neonatal development period in pigs may, at least in part, involve FOXL2.

Keywords

Armenti A., Zama A., Passantino L., Uzumcu M. (2008). Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats. Toxicol. Appl. Pharmacol., 233: 286–296.Search in Google Scholar

Aydoğan M., Barlas N. (2006). Effects of maternal 4-tert-octylphenol exposure on the reproductive tract of male rats at adulthood. Reprod. Toxicol., 22: 455–460.Search in Google Scholar

Bendixen E., Danielsen M., Larsen K., Bendixen C. (2010). Advances in porcine genomics – a toolbox for developing the pig as a model organism for molecular biomedical research. Brief. Funct. Genomics., 9(3): 208–219.Search in Google Scholar

Bertho S., Pasquier J., Pan Q., Le Trionnaire G., Bobe J., Postlethwait J.H., Pailhoux E., Schartl M., Herpin A., Guiguen Y. (2016) Foxl2 and its relatives are evolutionary conserved players in gonadal sex differentiation. Sex Dev., 10: 111–129.Search in Google Scholar

Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem., 72: 248–254.Search in Google Scholar

Cervantes-Camacho I., Guerrero-Estévez S.M., López M.F., Alarcón-Hernández E., López-López E. (2020). Effects of Bisphenol A on Foxl2 gene expression and DNA damage in adult viviparous fish Goodea atripinnis. J. Toxicol. Environ. Health A, 83: 95–112.Search in Google Scholar

Cocquet J., Pailhoux E., Jaubert F., Servel N., Xia X., Pannetier M., De Baere E., Messiaen L., Cotinot C., Fellous M., Veitia R.A. (2002). Evolution and expression of FOXL2. J. Med. Genet., 39: 916–921.Search in Google Scholar

Crisponi L., Deiana M., Loi A., Chiappe F., Uda M., Amati P., Bisceglia L., Zelante L., Nagaraja R., Porcu S., Ristaldi M.S., Marzella R., Rocchi M., Nicolino M., Lienhardt-Roussie A., Nivelon A., Verloes A., Schlessinger D., Gasparini P., Bonneau D., Cao A., Pilia G. (2001). The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat. Genet., 27: 159–166.Search in Google Scholar

Durlinger A.L., Gruijters M.J., Kramer P., Karels B., Ingraham H.A., Nachtigal M.W., Uilenbroek J.T., Grootegoed J.A., Themmen A.P. (2002). Anti-Müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology, 143: 1076–1084.Search in Google Scholar

Elzaiat M., Todeschini A.L., Caburet S., Veitia R.A. (2017). The genetic make-up of ovarian development and function: the focus on the transcription factor FOXL2. Clin. Genet., 91: 173–182.Search in Google Scholar

Fleming N.I., Knower K.C., Lazarus K.A., Fuller P.J., Simpson E.R., Clyne C.D. (2010). Aromatase is a direct target of FOXL2: C134W in granulosa cell tumors via a single highly conserved binding site in the ovarian specific promoter. PLoS ONE, 5: e14389.Search in Google Scholar

Georges A., Auguste A., Bessiere L., Vanet A., Todeschini A.L., Veitia R.A. (2014). FOXL2: a central transcription factor of the ovary. J. Mol. Endocrinol., 52: R17–33.Search in Google Scholar

Ghochani Y., Saini J.K., Mellon P.L., Thackray V.G. (2012). FOXL2 is involved in the synergy between activin and progestins on the follicle-stimulating hormone β-subunit promoter. Endocrinology, 153: 2023–2033Search in Google Scholar

Grzesiak M., Knapczyk-Stwora K., Ciereszko R.E., Wieciech I., Slomczynska M. (2014). Alterations in luteal production of androstendione, testosterone, and estrone, but not estradiol, during mid- and late pregnancy in pigs: Effects of androgen deficiency. Theriogenology, 82: 720–733.Search in Google Scholar

Hirano M., Wada-Hiraike O., Fu H., Akino N., Isono W., Sakurabashi A., Fukuda T., Morita Y., Tanikawa M., Miyamoto Y., Nishi Y., Yanase T., Harada M., Oishi H., Yano T., Koga K., Oda K., Kawana K., Fujii T., Osuga Y. (2017). The emerging role of FOXL2 in regulating the transcriptional activation function of estrogen receptor β: an insight into ovarian folliculogenesis. Reprod Sci., 24: 133–141.Search in Google Scholar

Kim J.H., Yoon S., Park M., Park H.O., Ko J.J., Lee K., Bae J. (2011). Differential apoptotic activities of wild-type FOXL2 and the adult-type granulosa cell tumor-associated mutant FOXL2 (C134W). Oncogene, 30: 1653–1663.Search in Google Scholar

Knapczyk-Stwora K., Durlej-Grzesiak M., Ciereszko R.E., Koziorowski M., Slomczynska M. (2013). Antiandrogen flutamide affects folliculogenesis during fetal development in pigs. Reproduction, 145: 265–276.Search in Google Scholar

Knapczyk-Stwora K., Grzesiak M., Ciereszko R.E., Czaja E., Koziorowski M., Slomczynska M. (2018). The impact of sex steroid agonists and antagonists on folliculogenesis in the neonatal porcine ovary via cell proliferation and apoptosis. Theriogenology, 113: 19–26.Search in Google Scholar

Knapczyk-Stwora K., Nynca A., Ciereszko R.E., Paukszto L., Jastrzebski J.P., Czaja E., Witek P., Koziorowski M., Slomczynska M. (2019). Flutamide-induced alterations in transcriptional profiling of neonatal porcine ovaries. J. Anim. Sci. Biotechnol., 10: 35.Search in Google Scholar

Knapczyk-Stwora K., Nynca A., Ciereszko R.E., Paukszto L., Jastrzebski J.P., Czaja E., Witek P., Koziorowski M., Slomczynska M. (2020a). Transcriptomic profiles of the ovaries from piglets neonatally exposed to 4-tert-octylphenol. Theriogenology, 153: 102–111.Search in Google Scholar

Knapczyk-Stwora K., Costa M. C., Gabriel A., Grzesiak M., Hubalewska-Mazgaj M., Witek P., Koziorowski M., Slomczynska M. (2020b). A transcriptome approach evaluating effects of neonatal androgen and anti-androgen treatments on regulation of luteal function in sexually mature pigs. Anim. Reprod. Sci., 212: 106252.Search in Google Scholar

Kummer V., Masková J., Zralý Z., Neca J., Simecková P., Vondrácek J., Machala M. (2008). Estrogenic activity of environmental polycyclic aromatic hydrocarbons in uterus of immature Wistar rats. Toxicol. Lett., 180: 212–221.Search in Google Scholar

Kuo F.T., Bentsi-Barnes I.K., Barlow G.M., Pisarska M.D. (2011). Mutant forkhead L2 (FOXL2) proteins associated with premature ovarian failure (POF) dimerize with wild-type FOXL2, leading to altered regulation of genes associated with granulosa cell differentiation. Endocrinology, 152: 3917–3929.Search in Google Scholar

Kuo F.T., Fan K., Bentsi-Barnes I., Barlow G.M., Pisarska M.D. (2012). Mouse forkhead L2 maintains repression of FSH-dependent genes in the granulosa cell. Reproduction, 144: 485–494.Search in Google Scholar

Lauretta R., Sansone A., Sansone M., Romanelli F., Appetecchia M. (2019). Endocrine disrupting chemicals: effects on endocrine glands. Front. Endocrinol. (Lausanne)., 10: 178.Search in Google Scholar

Leung D.T.H., Fuller P.J., Chu S. (2016). Impact of FOXL2 mutations on signaling in ovarian granulosa cell tumors. Int. J. Biochem. Cell. Biol., 72: 51–54.Search in Google Scholar

Monniaux D., Clément F., Dalbiès-Tran R., Estienne A., Fabre S., Mansanet C., Monget P. (2014). The ovarian reserve of primordial follicles and the dynamic reserve of antral growing follicles: What is the link? Biol. Reprod., 90: 85.Search in Google Scholar

Pannetier M., Fabre S., Batista F., Kocer A., Renault L., Jolivet G., Mandon-Pepin B., Cotinot C., Veitia R., Pailhoux E. (2006). FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development. J. Mol. Endocrinol., 36: 399–413.Search in Google Scholar

Park M., Suh D.S., Lee K., Bae J. (2014). Positive cross talk between FOXL2 and antimüllerian hormone regulates ovarian reserve. Fertil Steril., 102(3): 847–855.Search in Google Scholar

Pepling M.E. (2012). Follicular assembly: Mechanisms of action. Reproduction, 143: 139–149.Search in Google Scholar

Stocco C. (2008). Aromatase expression in the ovary: hormonal and molecular regulation. Steroids. 73: 473–487.Search in Google Scholar

Tyndall V., Broyde M., Sharpe R., Welsh M., Drake A.J., McNeilly A.S. (2012). Effect of androgen treatment during foetal and/or neonatal life on ovarian function in prepubertal and adult rats. Reproduction, 143: 21–33.Search in Google Scholar

Uda M., Ottolenghi C., Crisponi L., Garcia J.E., Deiana M., Kimber W., Forabosco A., Cao A., Schlessinger D., Pilia G. (2004). Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum. Mol. Genet., 13: 1171–1181.Search in Google Scholar

Uhlenhaut N.H., Jakob S., Anlag K., Eisenberger T., Sekido R., Kress J., Treier A.C., Klugmann C., Klasen C., Holter N.I., Riethmacher D., Schütz G., Cooney A.J., Lovell-Badge R., Treier M. (2009). Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell, 139: 1130–1142.Search in Google Scholar

Uzumcu M., Kuhn P.E., Marano J.E., Armenti A.E., Passantino L. (2006). Early postnatal methoxychlor exposure inhibits folliculogenesis and stimulates anti-Mullerian hormone production in the rat ovary. J. Endocrinol., 191: 549–558.Search in Google Scholar

Wang D.S., Kobayashi T., Zhou L.Y., Paul-Prasanth B., Ijiri S., Sakai F., Okubo K., Morohashi K., Nagahama Y. (2007). Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol. Endocrinol., 21(3): 712–725.Search in Google Scholar

Wang H., Wu T., Qin F., Wang L., Wang Z. (2012). Molecular cloning of Foxl2 gene and the effects of endocrine-disrupting chemicals on its mRNA level in rare minnow, Gobiocypris rarus. Fish. Physiol. Biochem., 38: 653–664.Search in Google Scholar

Wu J., Miao C., Lv X., Zhang Y., Li Y., Wang D. (2019). Estrogen regulates forkhead transcription factor 2 to promote apoptosis of human ovarian granulosa-like tumor cells. J. Steroid Biochem. Mol. Biol., 194: 105418.Search in Google Scholar

Zhao S., Fernald R.D. (2005). Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol., 12: 1047–1064.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo