1. bookVolume 21 (2021): Issue 4 (October 2021)
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year
access type Open Access

3D Cell Culture Technology – A New Insight Into in Vitro Research – A Review

Published Online: 28 Oct 2021
Page range: 1257 - 1273
Received: 19 Nov 2020
Accepted: 20 May 2021
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year

Most in vitro cell-based research is based on two-dimensional (2D) systems where growth and development take place on a flat surface, which does not reflect the natural environment of the cells. The imperfection and limitations of culture in 2D systems eventually led to the creation of three-dimensional (3D) culture models that more closely reproduce the actual conditions of physiological cell growth. Since the inception of 3D culture technology, many culture models have been developed, such as technologies of multicellular spheroids, organoids, and organs on chips in the technology of scaffolding, hydrogels, bio-printing and liquid media. In this review we will focus on the advantages and disadvantages of the 2D vs. 3D cell cultures technologies. We will also try to sum up available 3D culture systems and materials for building 3D scaffolds.


Ahearne M., Yang Y., El Haj A. J., Then K. Y., Liu K. -K. (2005). Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J. Royal Soc. Interface, 2: 455–463.Search in Google Scholar

Alhaque S., Themis M., Rashidi H. (2018). Three-dimensional cell culture: From evolution to revolution. Philos. Trans. R. Soc. Lond. B Biol. Sci., 373: 1750.Search in Google Scholar

Ardalani H., Sengupta S., Harms V., Vickerman V., Thomson J. A., Murphy W. L. (2019). 3-D culture and endothelial cells improve maturity of human pluripotent stem cell-derived hepatocytes. Acta Biomater., 95: 371–381.Search in Google Scholar

Bartosh T. J., Ylostalo J. H. (2019). Efficacy of 3D culture priming is maintained in human mesenchymal stem cells after extensive expansion of the cells. Cells, 8: 9–13.Search in Google Scholar

Blondel D., Lutolf M. P. (2019). Bioinspired hydrogels for 3D organoid culture. Chimia, 73: 81–85.Search in Google Scholar

Bodgi L., Bahmad H. F., Araji T., Al Choboq J., Bou-Gharios J., Cheaito K., Zeidan Y. H., Eid T., Geara F., Abou-Kheir W. (2019). Assessing radiosensitivity of bladder cancer in vitro: A 2D vs. 3D approach. Front. Oncol., 9: 1–11.Search in Google Scholar

Brevini T. A. L., Pennarossa G., Gandolfi F. (2020). A 3D approach to reproduction. Theriogenology, 150: 2–7.Search in Google Scholar

Brittain H. K., Scott R., Thomas E. (2017). The rise of the genome and personalised medicine. Clin. Med., 17: 545–551.Search in Google Scholar

Cannon T. M., Shah A. T., Skala M. C. (2017). Autofluorescence imaging captures heterogeneous drug response differences between 2D and 3D breast cancer cultures. Biomed. Opt. Exp., 8: 1911.Search in Google Scholar

Carter K., Lee H. J., Na K. S., Fernandes-Cunha G. M., Blanco I. J., Djalilian A., Myung D. (2019). Characterizing the impact of 2D and 3D culture conditions on the therapeutic effects of human mesenchymal stem cell secretome on corneal wound healing in vitro and ex vivo. Acta Biomater., 99: 247–257.Search in Google Scholar

Castiaux A. D., Spence D. M., Martin R. S. (2019). Review of 3D cell culture with analysis in microfluidic systems. Analyt. Met., 11: 4220–4232.Search in Google Scholar

Chaicharoenaudomrung N., Kunhorm P., Noisa P. (2019). Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World J. Stem Cell., 11: 1065–1083.Search in Google Scholar

Chaudhuri O. (2017). Viscoelastic hydrogels for 3D cell culture. Biomater. Sci., 5: 1480–1490.Search in Google Scholar

Corrò C., Novellasdemunt L., Li V. S. W. (2020). A brief history of organoids. Am. J. Physiol. Cell Physiol., 319: C151–C165.Search in Google Scholar

Czerner M., Fellay L. S., Suárez M. P., Frontini P. M., Fasce L. A. (2015). Determination of elastic modulus of gelatin gels by indentation experiments. Proc. Mat. Sci., 8: 287–296.Search in Google Scholar

Dong Y., Jin G., Hong Y., Zhu H., Lu T., Xu F., Bai D., Lin M. (2018). Engineering the cell microenvironment using novel photoresponsive hydrogels. ACS Appl. Mat. Interfac., 10: 12374–12389.Search in Google Scholar

Dutta D., Heo I., Clevers H. (2017). Disease modeling in stem cell-derived 3d organoid systems. Trends Mol. Med., 20: 1–18.Search in Google Scholar

Duval K., Grover H., Han L. -H., Mou Y., Pegoraro A. F., Fredberg J., Chen Z. (2017). Modeling physiological events in 2D vs. 3D cell culture. Physiology, 32: 266–277.Search in Google Scholar

Fang Y., Eglen R. M. (2017). Three-dimensional cell cultures in drug discovery and development. SLAS Discov., 22: 456–472.Search in Google Scholar

Fiorentzis M., Katopodis P., Kalirai H., Seitz B., Viestenz A., Coupland S. E. (2019). Conjunctival melanoma and electrochemotherapy: preliminary results using 2D and 3D cell culture models in vitro. Acta Ophthalmol., 97: e632–e640.Search in Google Scholar

Fontoura J. C., Viezzer C., dos Santos F. G., Ligabue R. A., Weinlich R., Puga R. D., Antonow D., Severino P., Bonorino C. (2020). Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Mat. Sci. Eng. C, 107: 110264.Search in Google Scholar

Gerlach G., Arndt K. (2013). Hydrogel sensors and actuators volume. Springer Ser. Chem. Sens. Biosens., 1–272.Search in Google Scholar

Godoy P., Hewitt N. J., Albrecht U., Andersen M. E., Ansari N., Bhattacharya S., Bode J. G., Bolleyn J., Borner C., Böttger J., Braeuning A., Budinsky R. A., Burkhardt B., Cameron N. R., Camussi G., Cho C. -S., Choi Y. -J., Craig Rowlands J., Dahmen U., Hengstler J. G. (2013). Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archiv. Toxicol., 87: 1315–1530.Search in Google Scholar

Goetz L. H., Schork N. J. (2019). Personalized medicine: motivation, challenges and progress. Fertil. Steril., 109: 952–963.Search in Google Scholar

Günther C., Brevini T., Sampaziotis F., Neurath M. F. (2019). What gastroenterologists and hepatologists should know about organoids in 2019. Digest. Liver Dis., 51: 753–760.Search in Google Scholar

He B., Chen G., Zeng Y. (2016). Three-dimensional cell culture models for investigating human viruses. Virol. Sin., 31: 363–379.Search in Google Scholar

Hori T., Kurosawa O. (2018). A three-dimensional cell culture method with a micromesh sheet and its application to hepatic cells. Tissue Eng. - Part C: Methods, 24: 730–739.Search in Google Scholar

Horman S. R., To J., Orth A. P. (2013). An HTS-compatible 3D colony formation assay to identify tumor-specific chemotherapeutics. J. Biomol. Screen., 18: 1298–1308.Search in Google Scholar

Huang G., Li F., Zhao X., Ma Y., Li Y., Lin M., Jin G., Jian Lu T. M., Genin G., Xu F. (2019). Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem. Rev., 117: 12764–12850.Search in Google Scholar

Ingeson-Carlsson C., Martinez-Monleon A., Nilsson M. (2015). Differential effects of MAPK pathway inhibitors on migration and invasiveness of BRAFV600E mutant thyroid cancer cells in 2D and 3D culture. Exp. Cell Res., 338: 127–135.Search in Google Scholar

Jackson S. E., Chester J. D. (2015). Personalised cancer medicine. Int. J. Cancer, 137: 262–266.Search in Google Scholar

Jain V., Haider N., Jain K. (2018). 3D printing in personalized drug delivery. Curr. Pharm. Des., 24: 5062–5071.Search in Google Scholar

Jensen C., Teng Y. (2020). Is it time to start transitioning from 2D to 3D cell culture? Front. Mol. Biosci., 7: 1–15.Search in Google Scholar

Kapałczyńska M., Kolenda T., Przybyła W., Zajączkowska M., Teresiak A., Filas V., Ibbs M., Bli ź niak R., Łuczewski Ł., Lamperska K. (2018). 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch. Med. Sci., 14: 910–919.Search in Google Scholar

Lee D., Zhang H., Ryu S. (2019 a). Elastic modulus measurement of hydrogels. Cellulose-Based Superabsorbent Hydrogels, pp. 865–884.Search in Google Scholar

Lee J. E., Lee J., Kim J. H., Cho N., Lee S. H., Park S. B., Koh B., Kang D., Kim S., Yoo H. M. (2019 b). Characterization of the anti-cancer activity of the probiotic bacterium Lactobacillus fermentum using 2D vs. 3D culture in colorectal cancer cells. Biomolecules, 9: 557.Search in Google Scholar

Mabry K. M., Payne S. Z., Anseth K. S. (2016). Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype. Biomaterials, 74: 31–41.Search in Google Scholar

Muniz E. C., Geuskens G. (2001). Compressive elastic modulus of polyacrylamide hydrogels and semi-IPNs with poly(N-isopropylacrylamide). Macromolecules, 34: 4480–4484.Search in Google Scholar

Othman A., Ehnert S., Dropmann A., Ruoß M., Nüssler A. K., Hammad S. (2020). Precision-cut liver slices as an alternative method for long-term hepatotoxicity studies. Archiv. Toxicol., 94: 2889–2891.Search in Google Scholar

Pogoda K. (2015). Rola sił mechanicznych generowanych przez macierz zewnątrzkomórkową w roz woju raka prostaty (in Polish). Docthoral Thesis, The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences, 1–123.Search in Google Scholar

Ravi M., Ramesh A., Pattabhi A. (2017). Contributions of 3D cell cultures for cancer research. J. Cell. Physiol., 232: 2679–2697.Search in Google Scholar

Riedl A., Schlederer M., Pudelko K., Stadler M., Walter S., Unterleuthner D., Unger C., Kramer N., Hengstschläger M., Kenner L., Pfeiffer D., Krupitza G., Dolznig H. (2017). Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT-mTOR-S6K signaling and drug responses. J. Cell Sci., 130: 203–218.Search in Google Scholar

Ryu N. E., Lee S. H., Park H. (2019). Spheroid culture system methods and applications for mesenchymal stem cells. Cells, 8: 1–13.Search in Google Scholar

Sapudom J., Alatoom A., Mohamed W. K. E., Garcia-Sabaté A., Mc Bain I., Nasser R. A., Teo J. C. M. (2020). Dendritic cell immune potency on 2D and in 3D collagen matrices. Biomater. Sci. 8: 5106–5120.Search in Google Scholar

Souza A. G., Silva I. B. B., Campos-Fernandez E., Barcelos L. S., Souza J. B., Marangoni K., Goulart L. R., Alonso-Goulart V. (2018). Comparative assay of 2D and 3D cell culture models: proliferation, gene expression and anticancer drug response. Curr. Pharmac. Design, 24: 1689–1694.Search in Google Scholar

Štampar M., Tomc J., Filipič M., Ž egura B. (2019). Development of in vitro 3D cell model from hepatocellular carcinoma (HepG2) cell line and its application for genotoxicity testing. Archiv. Toxicol., 93: 3321–3333.Search in Google Scholar

Tatara T., Mukohara T., Tanaka R., Shimono Y., Funakoshi Y., Imamura Y., Toyoda M., Kiyota N., Hirai M., Kakeji Y., Minami H. (2018). 3D culture represents apoptosis induced by trastuzumab better than 2D monolayer culture. Anticancer Res., 38: 2831–2839.Search in Google Scholar

Terrell J. A., Jones C. G., Kabandana G. K. M., Chen C. (2020). From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. J. Mat. Chem. B, 8: 6667–6685.Search in Google Scholar

Torras N., García-Díaz M., Fernández-Majada V., Martínez E. (2018). Mimicking epithelial tissues in three-dimensional cell culture models. Front. Bioeng. Biotechnol., 6: 197.Search in Google Scholar

Trenfield S. J., Awad A., Madla C. M., Hatton G. B., Goyanes A., Gaisford S., Basit A. W., Trenfield S. J., Awad A., Madla C. M., Hatton G. B. (2019). Expert opinion on drug delivery shaping the future: recent advances of 3D printing in drug delivery and healthcare. Exp. Opin. Drug Deliv., 16: 1–14.Search in Google Scholar

Verjans E. -T., Doijen J., Luyten W., Landuyt B., Schoofs L. (2018). Three-dimensional cell culture models for anticancer drug screening: Worth the effort? J. Cell. Physiol., 233: 2993–3003.Search in Google Scholar

Wyle ż oł M., Ostrowska B., Wróbel E. (2016). Inżynieria biomedyczna. Metody przyrostowe w technice medycznej (in Polish). Politechnika Lubelska.Search in Google Scholar

Xiang C., Du Y., Meng G., Yi L. S., Sun S., Song N., Zhang X., Xiao Y., Jie Wan J., Yi Z., Liu Y., Xie B., Wu M., Shu J., Sun D., Jia J., Liang Z., Sun D., Huang Y., Deng H. (2019). Long-term functional maintenance of primary human hepatocytes in vitro. Science, 364: 399–402.Search in Google Scholar

Xing J., Luo Y., Zhan J., Kang Z. (2018). Global shape optimization of fixtures to suppress wrinkles in large-displacement membrane structures. Int. J. Solids Struct., 144–145: 301–312.Search in Google Scholar

Zhang S., Buttler-Buecher P., Denecke B., Arana-Chavez V. E., Apel C. (2018). A comprehensive analysis of human dental pulp cell spheroids in a three-dimensional pellet culture system. Archiv. Oral Biol., 91: 1–8.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo