1. bookVolume 21 (2021): Issue 4 (October 2021)
Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Role of Polyphenols in the Metabolism of the Skeletal System in Humans and Animals – A Review

Published Online: 28 Oct 2021
Page range: 1275 - 1300
Received: 12 Feb 2021
Accepted: 24 May 2021
Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Polyphenols are a group of compounds arousing enormous interest due to their multiple effects on both human and animal health and omnipresence in plants. A number of in vitro and animal model studies have shown that all polyphenols exhibit anti-inflammatory and antioxidant activities, and play a significant role against oxidative stress-related pathologies. They also exert gut promotory effects and prevent chronic degenerative diseases. However, less attention has been paid to the potential influence of polyphenols on bone properties and metabolism. It is well known that proper growth and functioning of the organism depend largely on bone growth and health. Therefore, understanding the action of substances (including polyphenols) that may improve the health and functioning of the skeletal system and bone metabolism is extremely important for the health of the present and future generations of both humans and farm animals. This review provides a comprehensive summary of literature related to causes of bone loss during ageing of the organism (in both humans and animals) and possible effects of dietary polyphenols preventing bone loss and diseases. In particular, the underlying cellular and molecular mechanisms that can modulate skeletal homeostasis and influence the bone modeling and remodeling processes are presented.

Keywords

Abbas A. K., Lichtman A., Pillai S. (2014). Cellular and Molecular Immunology. University of California, San Francisco, Philadelphia, USA, 8th ed., 544 pp.Search in Google Scholar

Abd El-Fattah A. I., Fathy M. M., Ali Z. Y., El-Garawany A. E. A., Mohamed E. K. (2017). Enhanced therapeutic benefit of quercetin-loaded phytosome nanoparticles in ovariectomized rats. Chem. Biol. Interact., 271: 30–38.Search in Google Scholar

Abdelkarem H. M., Fadda L. M., Kaml O. R. (2016). Alleviation of bone markers in rats induced nano-zinc oxide by qurecetin and α-lipolic acid. Toxicol. Mech. Methods, 26: 692–699.Search in Google Scholar

Agidigbi T. S., Kim C. (2019). Reactive oxygen species in osteoclast differentiation and possible pharmaceutical of ROS-mediated osteoclast diseases. Int. J. Mol. Sci., 20: 3576–3592.Search in Google Scholar

Akter F., Ibanez J. (2016). Bone and cartilage tissue engineering. In: Tissue engineering made easy, Akter F. (ed.). 1st ed. New York, Elsevier Inc., pp. 77–98.Search in Google Scholar

Almeida M., O ’ Brien C. A. (2013). Basic biology of skeletal aging: Role of stress response pathways. J. Gerontol. A. Biol. Sci. Med. Sci., 68: 1197–1208.Search in Google Scholar

Ames B. N., Shigenaga M. K., Hagen T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci., 90: 7915–7922.Search in Google Scholar

Anandarajah A. P., Schwarz E. M. (2006). Anti-RANKL therapy for inflammatory bone disorders: mechanisms and potential clinical applications. J. Cell. Biochem., 97: 226–232.Search in Google Scholar

Arjmandi B. H., Salih M. A., Herbert D. C., Sims S. H., Kalu D. N. (1993). Evidence for estrogen receptor-linked calcium transport in the intestine. Bone Miner., 21: 63–74.Search in Google Scholar

Banfi G., Iorio E. L., Corsi M. M. (2008). Oxidative stress, free radicals and bone remodelling. Clin. Chem. Lab. Med., 46: 1550–1555.Search in Google Scholar

Barron M. J., Tsai C. J., Donahue S. W. (2010). Mechanical stimulation mediates gene expression in MC3T3 osteoblastic cells differently in 2D and 3D environments. J. Biomech. Eng., 132: 041005.Search in Google Scholar

Baxter-Jones A. D., Mirwald R. L., Mc Kay H. A., Bailey D. A. (2003). A longitudinal analysis of sex differences in bone mineral accrual in healthy 8-19-year-old boys and girls. Ann. Hum. Biol., 30: 160–175.Search in Google Scholar

Bichler J., Cavin C., Simic T., Chakraborty A., Ferk F., Hoelzl C., Schulte-Hermann R., Kundi M., Haidinger G., Angelis K., Knasmüller S. (2007). Coffee consumption protects human lymphocytes against oxidative and 3-amino-1-methyl-5H-pyrido [4,3-b] indole acetate (Trp-P-2) induced DNA-damage: Results of an experimental study with human volunteers. Food Chem. Toxicol., 45: 1428–1436.Search in Google Scholar

Bloomer R. J., Trepanowski J. F., Farney T. M. (2013). Influence of acute coffee consumption on postprandial oxidative stress. Nutr. Metab. Insights, 6: 35–42.Search in Google Scholar

Bohn T. (2014). Dietary factors affecting polyphenol bioavailability. Nutr. Rev., 72: 429–452.Search in Google Scholar

Cardona F., Andrés-Lacueva C., Tulipani S., Tinahones F. J., Queipo-Ortuño M. I. (2013). Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem., 24: 1415–1422.Search in Google Scholar

Celec P. (2004). Nuclear factor kappa B-molecular biomedicine: the next generation. Biomed Pharmacother., 58: 365–371.Search in Google Scholar

Cervellati C., Bonaccorsi G., Cremonini E., Romani A., Fila E., Castaldini M. C., Ferrazzini S., Giganti M., Massari L. (2014). Oxidative stress and bone resorption interplay as a possible trigger for postmenopausal osteoporosis. Biomed. Res. Int., 569563, 8 pp.Search in Google Scholar

Chen J. R., Lazarenko O. P., Wu X., Kang J., Blackburn M. L., Shankar K., Badger T. M., Ronis M. J. J. (2010). Dietary-induced serum phenolic acids promote bone growth via p38 MAPK/b-catenin canonical Wnt signaling. J. Bone. Miner. Res., 25: 2399–2411.Search in Google Scholar

Chiba H., Uehara M., Wu J., Wang X., Masuyama R., Suzuki K., Kanazawa K., Ishimi Y. (2003). Hesperidin, a citrus flavonoid, inhibits bone loss and decreases serum and hepatic lipids in ovariectomized mice. J. Nutr., 133: 1892–1897.Search in Google Scholar

Chiechi L. M., Secreto G., D ’ Amore M., Fanelli M., Venturelli E., Cantatore F., Valerio T., Laselva G., Loizzi P. (2002). Efficacy of a soy rich diet in preventing postmenopausal osteoporosis: The Menfis randomized trial. Maturitas, 42: 295–300.Search in Google Scholar

Chiva-Blanch G., Visioli F. (2012). Polyphenols and health: Moving beyond antioxidants. J. Berry Res., 2: 63–71.Search in Google Scholar

Christen P., Ito K., Ellouz R., Boutroy S., Sornay-Rendu E., Chapurlat R. D., van Rietbergen B. (2014). Bone remodelling in humans is load-driven but not lazy. Nature Communications, 5: 4855–4860.Search in Google Scholar

Circu M. L., Aw T. Y. (2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med., 15: 749–762.Search in Google Scholar

Clark E. M., Ness A. R., Bishop N. J., Tobias J. H. (2006). Association between bone mass and fractures in children: A prospective cohort study. J. Bone Miner. Res., 21: 1489–1495.Search in Google Scholar

Cory H., Passarelli S., Szeto J., Tamez M., Mattei J. (2018). The role of polyphenols in human health and food systems: A mini-review. Front. Nutr., 5: 87.Search in Google Scholar

de Barboza G. D., Guizzardi S., de Talamoni N. T. (2015). Molecular aspects of intestinal calcium absorption. World J. Gastroenterol., 21: 7142–7154.Search in Google Scholar

Desmawati D., Sulastri D. (2019). Phytoestrogens and their health effect. Maced. J. Med. Sci., 7: 495–499.Search in Google Scholar

Devareddy L., Hooshmand S., Collins J. K., Lucas E. A., Chai S. C., Arjmandi B. H. (2008). Blueberry prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis. J. Nutr. Biochem., 19: 694–699.Search in Google Scholar

Deyhim F., Stoecker B., Brusewitz G., Devareddy L., Arjmandi B. H. (2005). Dried plum reverses bone loss in an osteopenic rat model of osteoporosis. Menopause, 12: 755–762.Search in Google Scholar

Deyhim F., Garica K., Lopez E., Gonzalez J., Ino S., Garcia M., Patil B. S. (2006). Citrus juice modulates bone strength in male senescent rat model of osteoporosis. Nutrition, 22: 559–563.Search in Google Scholar

Di Munno O., Mazzantini M., Delle Sedie A., Mosca M., Bombardieri S. (2004). Risk factors for osteoporosis in female patients with systemic lupus erythematosus. Lupus, 13: 724–730.Search in Google Scholar

Ding Y., Yao H., Yao Y., Fai L. Y., Zhang Z. (2013). Protection of dietary polyphenols against oral cancer. Nutrients, 5: 2173–2191.Search in Google Scholar

Domazetovic V., Marcucci G., Iantomasi T., Brand M. L., Vincenzini M. T. (2017). Oxidative stress in bone remodeling: role of antioxidants. Clin. Cases. Miner. Bone Metab., 14: 209–216.Search in Google Scholar

Domínguez-López I., Yago-Aragón M., Salas-Huetos A., Tresserra-Rimbau A., Hurtado-Barroso S. (2020). Effects of dietary phytoestrogens on hormones throughout a human lifespan: Nutrients, 12: 2456–2481.Search in Google Scholar

Ducy P., Desbois C., Boyce B., Pinero G., Story B., Dunstan C., Smith E., Bonadio J., Goldstein S., Gundberg C., Bradley A., Karsenty G. (1996). Increased bone formation in osteocalcin-deficient mice. Nature, 382: 448–452.Search in Google Scholar

Eastell R., Hannon R. A. (2008). Biomarkers of bone health and osteoporosis risk. Proc. Nutr. Soc., 67: 157–162.Search in Google Scholar

Eriksen E. F., Hodgson S. F., Eastell R., Cedel S. L., O ’ Fallon W. M. O., Riggs B. L. (1990). Cancellous bone remodelling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption, and bone loss at tissue and cellular levels. J. Bone Miner. Res., 5: 311–319.Search in Google Scholar

Filaire E., Hechmi T. (2012). Reactive oxygen species and exercise on bone metabolism: friend or enemy? Joint Bone Spine, 79: 341–346.Search in Google Scholar

Fintini D., Cianfarani S., Cofini M., Andreoletti A., Ubertini G. M., Cappa M., Manco M. (2020). The bones of children with obesity. Front. Endocrinol., 11: 200–216Search in Google Scholar

Forte L., Torricelli P., Boanini E., Gazzano M., Rubini K., Fini M., Bigi A. (2016). Antioxidant and bone repair properties of quercetin-functionalized hydroxyapatite: An in vitro osteoblast- osteoclast-endothelial cell co-culture study. Acta Biomater., 32: 298–308.Search in Google Scholar

Forte L., Torricelli P., Boanini E., Rubini K., Fini M., Bigi A. (2017). Quercetin and alendronate multi-functionalized materials as tools to hinder oxidative stress damage. J. Biomed. Mater. Res., A, 105: 3293–3303.Search in Google Scholar

García-López S., Meikle M. C., Villanueva R. E., Montaño L., Massó F., Ramírez-Amador V., Bojalil R. (2005). Mechanical deformation inhibits IL-10 and stimulates IL-12 production by mouse calvarial osteoblasts in vitro. Arch. Oral Biol., 50: 449–452.Search in Google Scholar

Ge Y. W., Feng K., Liu X. L., Zhu Z. A., Chen H. F., Chang Y. Y., Sun Z. Y., Wang H. W., Zhang J. W., Yu D. G., Mao Y. Q. (2020). Quercetin inhibits macrophage polarization through the p-38α/β signalling pathway and regulates OPG/RANKL balance in a mouse skull model. J. Cell. Mol. Med., 24: 3203–3216.Search in Google Scholar

Gennari C., Agnusdei D., Nardi P., Civitelli R. (1990). Estrogen preserves a normal intestinal responsiveness to 1, 25-dihydroxyvitamin D3 in oophorectomized women. J. Clin. Endocrinol. Metab., 71: 1288–1293.Search in Google Scholar

Ginaldi L, De Martinis M. (2016). Osteoimmunology and beyond. Curr. Med. Chem., 23: 3754–3774.Search in Google Scholar

Goulding A., Cannan R., Williams S. M., Gold E. J., Taylor R. W., Lewis-Barned N. J. (1998). Bone mineral density in girls with forearm fractures. J. Bone Miner. Res., 13: 143–148.Search in Google Scholar

Graef J. L., Rendina-Ruedy E., Crockett E. K., Ouyang P., Jarrod B., King J. B., Ciechewicz R. H., Edralin A., Lucas E. A., Smith B. J. (2018). Select polyphenolic fractions from dried plum enhance osteoblast activity through BMP-2 signaling. J. Nutr. Biochem., 55: 59–67.Search in Google Scholar

Gravallese E. M., Manning C., Tsay A., Naito A., Pan C., Amento E., Goldring S. R. (2000). Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheumatism, 43: 250–258.Search in Google Scholar

Guo C., Yang R. J., Jang K., Zhou X. L., Liu Y. Z. (2017). Protective effects of pretreatment with quercetin against lipopolysaccharide-induced apoptosis and the inhibition of osteoblast. Differentiation via the MAPK and Wnt/β-Catenin pathways in MC3T3-E1 cells. Cell. Physiol. Biochem., 43: 1547–1561.Search in Google Scholar

Haddad J. J. (2002). Antioxidant and prooxidant mechanisms in the regulation of redox (y)-sensitive transcription factors. Cell Signal, 14: 879–897.Search in Google Scholar

Hadjidakis D. J., Androulakis I. I. (2006). Bone remodelling. Ann. N. Y. Acad. Sci., 1092: 385–396.Search in Google Scholar

Hall J. M., Mc Donnell D. P. (1999). The estrogen receptor beta-isoform (ERbeta) of the human estrogen receptor modulates ER alpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology, 140: 5566–5578.Search in Google Scholar

Hardcastle A. C., Aucott L., Reid D. M., Mac Donald H. M. (2011). Associations between dietary flavonoid intakes and bone health in a Scottish population. J. Bone Miner. Res., 26: 941–947.Search in Google Scholar

Hassan J. K., Sharrad A. K., Sheri F. H. (2018). Effect of quercetin supplement on some bone mineralization biomarkers in diabetic type 2 patients. Adv. Pharmacol. Pharm., 6: 43–49.Search in Google Scholar

Heaney R. P. (2007). Bone health. Am. J. Clin. Nutr., 85: 300–303.Search in Google Scholar

Hendrich A. B. (2006). Flavonoid-membrane interactions: possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol. Sinica, 27: 27–40.Search in Google Scholar

Henwood M. J., Binkovitz L. (2009). Update on pediatric bone health. J. Am. Osteopath. Assoc., 109: 5–12.Search in Google Scholar

Hohman E. E., Weaver C. M. (2015). A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats. J. Nutr., 145: 253–259.Search in Google Scholar

Honma M., Ikebuchi Y., Kariya Y., Suzuki H. (2014). Establishment of optimized in vitro assay methods for evaluating osteocyte functions. J. Bone Miner. Metab., 33: 73–84.Search in Google Scholar

Hooshmand S., Kumar A., Zhang J. Y., Johnson S. A., Chaid S. C., Arjmandi B. H. (2015). Evidence for anti-inflammatory and antioxidative properties of dried plum polyphenols in macrophage RAW 264.7 cells. Food Funct., 6: 1719–1725.Search in Google Scholar

Hooshmand S., Kern M., Metti D., Shamloufard P., Chai S. C., Johnson S. A., Payton M. E., Arjmandi B. H. (2016). The effect of two doses of dried plum on bone density and bone biomarkers in osteopenic postmenopausal women: a randomized, controlled trial. Osteoporos. Int., 27: 2271–2279.Search in Google Scholar

Hussain S. A., Sulaiman A. A., Alhaddad H., Alhadidi Q. (2016). Natural polyphenols: Influence on membrane transporters. J. Intercult. Ethnopharmacol., 5: 97–104.Search in Google Scholar

Ighodaro O. M., Akinloye O. A. (2018). First line defense antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defense grid. Alexandria Med. J., 54: 287–293.Search in Google Scholar

Inoue J., Choi J. M., Yoshidomi T., Yashiro T., Sato R. (2010). Quercetin enhances VDR activity, leading to stimulation of its target gene expression in Caco-2 Cells. J. Nutr. Sci. Vitaminol., 56: 326–330.Search in Google Scholar

Jagger C. J., Lean J. M., Davies J. T., Chambers T. J. (2005). Tumor necrosis factor-{alpha} mediates osteopenia caused by depletion of antioxidants. Endocrinology, 146: 113–118.Search in Google Scholar

Jakesevic M., Aaby K., Borge G. I., Jeppsson B., Ahrne S., Molin G. (2011). Antioxidative protection of dietary bilberry, chokeberry and Lactobacillus plantarum HEAL 19 in mice subjected to intestinal oxidative stress by ischemia-reperfusion. BMC Complement. Altern. Med., 11: 8–20.Search in Google Scholar

Karlsen A., Retterstøl L., Laake P., Paur I., Bøhn S. K., Sandvik L., Blomhoff R. (2007). Anthocyanins inhibit nuclear factor-kappa B activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J. Nutr., 137: 1951–1954.Search in Google Scholar

Khalid I., Khoshhal K. I. (2011). Childhood osteoporosis. J. Taibah Univ. Med. Sci., 6: 61–76.Search in Google Scholar

Khosla S. (2001). Minireview: the OPG/RANKL/RANK system. Endocrinology, 142: 5050–5055.Search in Google Scholar

Ko C. H., Lau K. M., Choy W. Y., Leung P. C. (2009). Effects of tea catechins, epigallocatechin, gallocatechin, and gallocatechin gallate, on bone metabolism. J. Agric. Food Chem., 57: 7293–7297.Search in Google Scholar

Křížová L., Dadáková K., Kašparovská J., Kašparovský T. (2019). Isoflavones. Molecules, 24: 1076–1104.Search in Google Scholar

Lambert M. N. T., Hu L. M., Jeppesen P. B. A. (2017 a). A systematic review and meta-analysis of the effects of isoflavone formulations against estrogen-deficient bone resorption in peri- and postmenopausal women. Am. J. Clin. Nutr., 106: 801–811.Search in Google Scholar

Lambert M. N. T., Thybo C. B., Lykkeboe S., Rasmussen L. M., Frette X., Christensen L. P., Jeppesen P. B. (2017 b). Combined bioavailable isoflavones and probiotics improve bone status and estrogen metabolism in postmenopausal osteopenic women: A randomized controlled trial. Am. J. Clin. Nutr., 106: 909–920.Search in Google Scholar

Lampropoulos C. E., Papaioannou I., D ’ Cruz D. P. (2012). Osteoporosis – A risk factor for cardiovascular disease? Nat. Rev. Rheumatol., 8: 87–98.Search in Google Scholar

Langiea S. A. S., Kowalczyk P., Tomaszewski B., Vasilaki A., Maas L. M., Moonend E. J., Palagani A., Godschalk R. W. L., Tudek B., van Schootend F. J., Berghee W. V., Zabielski R., Mathers J. C. (2014). Redox and epigenetic regulation of the APE1 gene in the hippocampus of piglets: The effect of early life exposures. DNA Repair, 18: 52–62.Search in Google Scholar

Langsetmo L., Hanley D. A., Prior J. C., Barr S. I., Anastassiades T., Towheed T., Goltzman D., Morin S., Poliquin S., Kreiger N. (2011). Dietary patterns and incident low-trauma fractures in postmenopausal women and men aged ≥50 y: A population-based cohort study. Am. J. Clin. Nutr., 93: 192–199.Search in Google Scholar

Law Y. Y., Chiu H. F., Lee H. H., Shen Y. C., Venkatakrishnan K., Wang C. K. (2016). Consumption of onion juice modulates oxidative stress and attenuates the risk of bone disorders in middle-aged and post-menopausal healthy subjects. Food Funct., 7: 902–912.Search in Google Scholar

Lean J. M., Davies J. T., Fuller K., Jagger C. J., Kirstein B., Partington G. A., Urry Z., Chambers T. J. (2003). A crucial role for thiol antioxidants in estrogen deficiency bone loss. J. Clin. Invest., 112: 915–923.Search in Google Scholar

Leelarungrayub D., Sallepan M., Charoenwattana S. (2011). Effects of acute caffeinated coffee consumption on energy utilization related to glucose and lipid oxidation from short submaximal treadmill exercise in sedentary men. Nutr. Metab. Insights, 4: 65–72.Search in Google Scholar

Lipiński K., Mazur M., Antoszkiewicz Z., Purwin C. (2017). Polyphenols in monogastric nutrition – a review. Ann Anim Sci., 17: 41–58.Search in Google Scholar

Maetani M., Maskarinec G., Franke A., Cooney R. (2009). Association of leptin, 25-hydroxyvitamin D, and parathyroid hormone in women. Nutr. Cancer., 61: 225–231.Search in Google Scholar

Mane C., Loonis M., Juhel C., Dufour C., Malien-Aubert C. (2011). Food grade lingonberry extract: Polyphenolic composition and in vivo protective effect against oxidative stress. J. Agric. Food Chem., 59: 3330–3339.Search in Google Scholar

Manolagas S. C., Jilka R. L. (1995). Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N. Engl. J. Med., 332: 305–311.Search in Google Scholar

Marchionatti A. M., Pacciaroni A., de Talamoni N. T. (2013). Effects of quercetin and menadione on intestinal calcium absorption and the underlying mechanisms. Comp. Biochem. Physiol., A, 164: 215–220.Search in Google Scholar

Marwan A. L. I., Saleh A. A. S. (2012). Comparative study of quercetin or/and urate oxidase against gentamicin-induced nephrotoxicity and oxidative stress in rat kidneys. Am. J. Sci., 8: 600–607.Search in Google Scholar

Mc Kane W. R., Khosla S., Burritt M. F., Kao P. C., Wilson D. M., Ory S. J., Riggs B. L. (1995). Mechanism of renal calcium conservation with estrogen replacement therapy in women in early postmenopause – a clinical research center study. J. Clin. Endocrinol. Metab., 80: 3458–3464.Search in Google Scholar

Mc Lean R. R. (2009). Proinflammatory cytokines and osteoporosis. Current Osteoporosis Reports, 7: 134–139.Search in Google Scholar

Mc Tiernan A., Wactawski-Wende J ., Wu L ., Rodabough R . J., Watts N . B., Tylavsky F., Freeman R., Hendrix S., Jackson R. (2009). Low-fat, increased fruit, vegetable, and grain dietary pattern, fractures, and bone mineral density: The women’s health initiative dietary modification trial. Am. J. Clin. Nutr., 89: 1864–1876.Search in Google Scholar

Memon S. S., Kamboh A. A., Leghar I. H., Leghari R. A. (2019). Effect of in ovo and posthatch administration of honey on the immunity and intestinal microflora of growing chickens. J. Anim. Feed Sci., 28: 346–353.Search in Google Scholar

Mody N., Parhami F., Sarafian T. A., Demer L. L. (2001). Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic. Biol. Med., 31: 509–519.Search in Google Scholar

Mølgaard C., Thomsen B. L., Michaelsen K. F. (1999). Whole body bone mineral accretion in healthy children and adolescents. Arch. Dis. Child, 81: 10–15.Search in Google Scholar

Muthusami S., Ramachandran I., Muthusamy B., Vasudevan G., Prabhu V., Subramaniam V., Jagadeesan A., Narasimhan S. (2005). Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin. Chim. Acta, 360: 81–86.Search in Google Scholar

Nakashima T., Takayanagi H. (2009). Osteoimmunology: crosstalk between the immune and bone systems. J. Clin. Immunol., 29: 555–567.Search in Google Scholar

Neveu V., Perez-Jiménez J., Vos F., Crespy V., du Chaffaut L., Mennen L., Knox C., Eisner R., Cruz J., Wishart D., Scalbert A. (2010). Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database, 2010, article ID: bap024, doi:10.1093/database/.Search in Google Scholar

New S. A., Robins S. P., Campbell M. K., Martin J. C., Garton M. J., Bolton-Smith C., Grubb D. A., Lee S. J., Reid D. M. (2000). Dietary influences on bone mass and bone metabolism: Further evidence of a positive link between fruit and vegetable consumption and bone health? Am. J. Clin. Nutr., 71: 142–151.Search in Google Scholar

Nijveldt R. J., van Nood E., van Hoorn D. E., Boelens P. G., van Norren K., van Leeuwen P. A. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 74: 418–425.Search in Google Scholar

Nojiri H., Saita Y., Morikawa D., Kobayashi K., Tsuda C., Miyazaki T., Saito M., Marumo K., Yonezawa I., Kaneko K., Shirasawa T., Shimizu T. (2011). Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking. J. Bone Miner. Res., 26: 2682–2694.Search in Google Scholar

Okamoto F., Okabe K., Kajiya H. (2001). Genistein, a soybean isoflavone, inhibits inward rectifier K(+) channels in rat osteoclasts. Jpn. J. Physiol., 51: 501–509.Search in Google Scholar

Oteiza P. I., Erlejman A. G., Verstraeten S. V., Keen C. L., Fraga C. G. (2005). Flavonoidmembrane interactions: A protective role of flavonoids at the membrane surface? Clin. Dev. Immunol., 12: 19–25.Search in Google Scholar

Paszkiewicz M., Budzyńska A., Ró ż alska B., Sadowska B. (2012). The immunomodulatory role of plant polyphenols. Postepy Hig. Med. Dosw., 66: 637–646.Search in Google Scholar

Petti S., Scully C. (2009). Polyphenols, oral health and disease: A review. J. Dent., 37: 413–423.Search in Google Scholar

Pieszka M., Gogol P., Pietras M., Pieszka M. (2015). Valuable components of dried pomaces of chokeberry, black currant, strawberry, apple and carrot as a source of natural antioxidants and nutraceuticals in the animal diet. Ann. Anim. Sci., 15: 475–491.Search in Google Scholar

Pino A. M., Ríos S., Astudillo P., Fernández M., Figueroa P., Seitz G., Rodríguez J. P. (2010). Concentration of adipogenic and proinflammatory cytokines in the bone marrow supernatant fluid of osteoporotic women. J. Bone Miner. Res., 25: 492–498.Search in Google Scholar

Prouillet C., Mazière J. C., Mazière C., Wattel A., Brazier M., Kamel S. (2004). Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem. Pharmacol., 67: 1307–1313.Search in Google Scholar

Raggatt L. J., Partridge N. C. (2010). Cellular and molecular mechanisms of bone remodelling. J. Biol. Chem., 285: 25103–25108.Search in Google Scholar

Rahman I. (2000). Regulation of nuclear factor-[kappa] B, activator protein-1, and glutathione levels by tumor necrosis factor-[alpha] and dexamethasone in alveolar epithelial cells. Biochem. Pharmacol., 60: 1041–1049.Search in Google Scholar

Rao L. G., Rao A. V. (2012). Oxidative stress and antioxidants in the risk of osteoporosis – role of the antioxidants lycopene and polyphenols. Open access peer-reviewed chapter. DOI: 10.5772/54703.Search in Google Scholar

Ray P. D., Huang B. W., Tsuji Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal., 24: 981–990.Search in Google Scholar

Reid I. R. (2008). Menopause. J. Bone Miner. Res., 7: 95–97.Search in Google Scholar

Rendina E., Hembree K. D., Davis M. R., Marlow D., Clarke S. L., Halloran B. P., Lucas E. A., Smith B. J. (2013). Dried plum’s unique capacity to reverse bone loss and alter bone metabolism in postmenopausal osteoporosis model. Plos One, 8: e60569.Search in Google Scholar

Resende F. A., de Oliveira A. P. S., de Camargo M. S., Vilegas W., Varanda E. A. (2013). Evaluation of estrogenic potential of flavonoids using a recombinant yeast strain and MCF7/BUS cell proliferation assay. Plos One, 8(10): e74881.Search in Google Scholar

Riggs B. L., Parfitt A. M. (2005). Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J. Bone Miner. Res., 20: 177–184.Search in Google Scholar

Ritchlin C. T., Haas-Smith S. A., Li P., Hicks D. G., Schwarz E. M. (2003). Mechanisms of TNF-a- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J. Clin. Invest., 222: 821–831.Search in Google Scholar

Rizzoli R., Bianchi M. L., Garabédian M., Mc Kay H. A., Moreno L. A. (2011). Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone, 46: 294–305.Search in Google Scholar

Ruiz-Larrea M. B., Martín C., Martínez R., Navarro R., Lacort M., Miller N. J. (2000). Antioxidant activities of estrogens against aqueous and lipophilic radicals; differences between phenol and catechol estrogens. Chem. Phys. Lipids, 105: 179–188.Search in Google Scholar

Sadowska B., Różalska B. (2010). Imbalance of defense reactions as a risk factor for the development of wound infections (in Polish). Sepsis, 3: 87–92.Search in Google Scholar

Seferos N., Petrokokkinos L., Kotsiou A., Rallis G., Tesseromatis C. (2016). Hypericum perforatum L. treatment restored bone mass changes in swimming stressed rats. Stomatologija, Baltic Dent. Maxillofac. J., 18: 9–13.Search in Google Scholar

Seibel M. J. (2003). Biochemical markers of bone remodeling. Endocrinol. Metab. Clin. N. Am., 32: 83–113.Search in Google Scholar

Shahnazari M., Turner R. T., Iwaniec U. T., Wronski T. J., Li M., Ferruzzi M. G., Nissenson R. A., Halloran B. P. (2016). Dietary dried plum increases bone mass, suppresses proinflammatory cytokines and promotes attainment of peak bone mass in male mice. J. Nutr. Biochem., 34: 73–82.Search in Google Scholar

Shen C. L., von Bergen V., Chyu M. C., Jenkins M. R., Mo H., Chen C. H., Kwun I. S. (2012). Fruits and dietary phytochemicals in bone protection. Nutr. Res., 32: 897–910.Search in Google Scholar

Sheweita S. A., Al Samghan A. S., Khoshhal O. K. (2019). Osteoporosis in children: Possible risk factors and role of antioxidants. J. Musculoskelet. Surg. Res., 3: 319–325.Search in Google Scholar

Singla K. R, Dubey A. K., Garg A., Sharma R. K., Fiorino M., Ameen S. M., Haddad M. A., Al-Hiary M. (2019). Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J. AOAC Int., 102: 1397–1400.Search in Google Scholar

Sirota R., Gorelik S., Harris R., Kohen R., Kanner J. (2013). Coffee polyphenols protect human plasma from postprandial carbonyl modifications. Mol. Nutr. Food Res., 57: 916–919.Search in Google Scholar

Smith B. J., Bu S. Y., Wang Y., Rendina E., Lim Y. F., Marlow D., Clarke S. L., Cullen D. M., Lucas E. A. (2014). A comparative study of the bone metabolic response to dried plum supplementation and PTH treatment in adult, osteopenic ovariectomized rat. Bone, 58: 151–159.Search in Google Scholar

Song L., Zhao J., Zhang X., Li H., Zhou Y. (2013). Icariin induces osteoblast proliferation, differentiation and mineralization through estrogen receptor-mediated ERK and JNK signal activation. Eur. J. Pharmacol., 714: 15–22.Search in Google Scholar

Sözen T., Özışık L., Başaran N. C. (2017). An overview and management of osteoporosis. Eur. J. Rheumatol., 4: 46–56.Search in Google Scholar

Stein B., Yang M. X. (1995). Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol. Cell Biol., 15: 4971–4979.Search in Google Scholar

Streicher C., Heyny A., Andrukhova O., Hofbauer L. C., Paul J. Kostenuik P. J., Erben R. G. (2017). Estrogen regulates bone turnover by targeting RANKL expression in bone lining cells. Sci. Rep., 7: 6460.Search in Google Scholar

Tanck E., Homminga J., van Lenthe G. H., Huiskes R. (2001). Increase in bone volume fraction precedes architectural adaptation in growing bone. Bone, 28: 650–654.Search in Google Scholar

Tang J., Diao P., Shu X., Li L., Xiong L. (2019). Quercetin and quercitrin attenuates the inflammatory response and oxidative stress in LPS-induced RAW264.7 cells: In vitro assessment and a theoretical model. Biomed Res. Int., article ID 7039802, 8 pp.Search in Google Scholar

Teitelbaum S. L. (2000). Bone resorption by osteoclasts. Science, 289: 1504–1508.Search in Google Scholar

Tortelli F., Pujic N., Liu Y., Laroche N., Vico L., Cancedda R. (2009). Osteoblast and osteoclast differentiation in an in vitro three-dimensional model of bone. Tissue Eng. - A, 15: 2373–2383.Search in Google Scholar

Turner C. H. (2004). Mechanical loading and bone formation. Int. Bone Min. Soc. Knowledge Environ., 1: 15–23.Search in Google Scholar

Ullah M. F., Khan M. W. (2008). Food as medicine: potential therapeutic tendencies of plant derived polyphenolic compounds. Asian Pac. J. Cancer Prev., 9: 187–196.Search in Google Scholar

Valko M., Rhodes C. J., Moncol J., Izakovic M., Mazur M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 160: 1–40.Search in Google Scholar

Valko M., Leibfritz D., Moncol J., Cronin M. T., Mazur M., Telser J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 39: 44–84.Search in Google Scholar

Van Dyke T. E., Serhan C. N. (2003). Resolution of inflammation: a new paradigm for the pathogenesis of periodontal diseases. J. Dent. Res., 82: 82–90.Search in Google Scholar

Van Leeuwen J., Koes B. W., Paulis W. D., van Middelkoop M. (2017). Differences in bone mineral density between normal-weight children and children with overweight and obesity: a systematic review and meta-analysis. Obesity Rev., 18: 526–46.Search in Google Scholar

Villarreal A., Stoecker B. J., Garcia C., Garcia K., Rios R., Gonzales C., Mandadi K., Faraji B., Patil B. S., Deyhim F. (2007). Cranberry juice improved antioxidant status without affecting bone quality in orchidectomized male rats. Phytomedicine, 14: 815–820.Search in Google Scholar

Wallace R. J., Oleszek W., Franz C., Hahn I., Baser K. H. C., Mathe A., Teichmann K. (2010). Dietary plant bioactives for poultry health and productivity. Brit. Poultry Sci., 51: 461–487.Search in Google Scholar

Wang C. H., Lai Y. H., Lin Y. L., Kuo C. H., Syu R. J., Chen M. C., Hsu B. G. (2020). Increased serum leptin level predicts bone mineral density in hemodialysis patients. Int. J. Endocrinol., Article ID 8451751.Search in Google Scholar

Weaver C. M., Gordon C. M., Janz K. F., Kalkwarf H. J., Lappe J. M., Lewis R., O ’ Karma M., Wallace T. C., Zemel B. S. (2016). The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos. Int., 27: 1281–1386.Search in Google Scholar

Weitzmann M. N., Pacifici R. (2005). The role of T lymphocytes in bone metabolism. Immunol. Rev., 208: 154–168.Search in Google Scholar

Weitzmann M. N., Pacifici R. (2006). Estrogen deficiency and bone loss: an inflammatory tale. J. Clin. Invest., 116: 1186–1194.Search in Google Scholar

Welch A., Mac Gregor A., Jennings A., Fairweather-Tait S., Spector T., Cassidy A. (2012). Habitual flavonoid intakes are positively associated with bone mineral density in women. J. Bone Miner. Res., 27: 1872–1878.Search in Google Scholar

Xing L. Z., Ni H. J., Wang Y. L. (2017). Quercitrin attenuates osteoporosis in ovariectomized rats by regulating mitogen-activated protein kinase (MAPK) signaling pathways. Biomed. Pharmacother., 89: 1136–1141.Search in Google Scholar

Yamaguchi M., Weitzmann M. N. (2009). The estrogen 17β-estradiol and phytoestrogen genistein mediate differential effects on osteoblastic NF-κB activity. Int. J. Mol. Med., 23: 297–301.Search in Google Scholar

Yamaguchi Y., Park J. H., Inouye M. (2011). Quercetin, a potent suppressor of NF-κB and Smad activation in osteoblasts. Int. J. Mol. Med., 28: 521–525.Search in Google Scholar

Yanbaeva D. G., Dentener M. A., Creutzberg E. C., Wesseling G., Wouters E. F. M. (2007). Systemic effects of smoking. Chest, 131: 1557–1566.Search in Google Scholar

Yesilbag D., Eren M., Agel H., Kovanlikaya A., Balci F. (2011). Effects of dietary rosemary, rosemary volatile oil and vitamin E on broiler performance, meat quality and serum SOD activity. Brit. Poultry Sci., 52: 472–482.Search in Google Scholar

Zhang J., Lazarenko O. P., Blackburn M. L., Shankar K., Badger T. M., Ronis M. J. J., Chen J. R. (2011 a). Feeding blueberry diets in early life prevent senescence of osteoblasts and bone loss in ovariectomized adult female rats. Plos One, 6(9): e24486.Search in Google Scholar

Zhang X., Zhao L., Cao F., Ahmad H., Wang G., Wang T. (2013). Effects of feeding fermented Ginkgo biloba leaves on small intestinal morphology, absorption, and immunomodulation of early lipopolysaccharide-challenged chicks. Poultry Sci., 92: 119–130.Search in Google Scholar

Zhang Y. B., Zhong Z. M., Hou G., Jiang H., Chen J. T. (2011 b). Involvement of oxidative stress in age-related bone loss. J. Surg. Res., 169: e37–e42.Search in Google Scholar

Zhang Y. J., Gan R. Y., Li S., Zhou Y., Li A. N., Xu D. P., Li H. B. (2015). Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules, 20: 21138–21156.Search in Google Scholar

Żary-Sikorska E., Juśkiewicz J., Jundziłł A., Rybka J. (2016). Effect of diets varying in the type of dietary fibre and its combination with polyphenols on gut function, microbial activity and antioxidant status in rats. J. Anim. Feed Sci., 25: 250–258.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo