Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year
access type Open Access

The protective role of vitamins (E + C) on Nile tilapia (Oreochromis niloticus) exposed to ZnO NPs and Zn ions: Bioaccumulation and proximate chemical composition

Published Online: 06 Sep 2021
Page range: -
Received: 27 Apr 2021
Accepted: 15 Jun 2021
Journal Details
First Published
25 Nov 2011
Publication timeframe
4 times per year

The accumulation potency of zinc nanoparticles in Nile tilapia (Oreochromis niloticus) were previously studied but their impacts on proximate chemical composition in muscle tissue by describing the dose-dependent accumulation and the protective role of vitamins (E + C), have not been investigated. Therefore, this study was carried out to assess the protective role of vitamins (E + C) on Zn accumulation in muscle and gill tissues of O. niloticus exposed to three sublethal concentrations (1/8 LC50, 1/4 LC50, and 1/2 LC50) of zinc oxide nanoparticles (ZnO NPs) compared to zinc oxide bulk particles (ZnO BPs) as well as their effects on the induced chemical composition alterations for different experimental periods (7, 14, 21, and 28 day). The data displayed that fish exposed to the different sublethal concentrations of ZnO NPs or ZnO BPs have a significant increase (p<0.05) in Zn ions accumulation in muscle and gill tissues compared to control group but Zn was accumulated in gill tissue higher than muscle tissue at all exposure periods. Also, Zn accumulation was higher in fish tissues exposed to ZnO NPs than ZnO BPs. On the other hand, groups supplemented with vitamins (E + C) showed a significant decreasing (p<0.05) in accumulated Zn levels compared to groups without supplementation. The values of these supplemented groups returned to similar levels established in the control at low concentrations but still higher than control at the high concentrations. Furthermore, the results showed that moisture and ash content slightly increased while protein and fat decreased in fish exposed to ZnO NPs or ZnO BPs compared to control group. In conclusion, the findings supported that a combination of vitamins (E + C) reduced Zn accumulation and ameliorated chemical composition alterations in O.niloticus fish.


Abdelazim A.M., Saadeldin I.M., Swelum A.A.A., Afifi M.M., Alkaladi A. (2018). Oxidative Stress in the Muscles of the Fish Nile Tilapia Caused by Zinc Oxide Nanoparticles and Its Modulation by Vitamins C and E. Oxid. Med. Cell. Longev., 2018. https://doi.org/10.1155/2018/6926712Search in Google Scholar

Abdel-Khalek A.A., Hamed A., Marie M.A. (2016). The accumulation potency of bulk and nano zinc metal and their impacts on the hematological and histological perturbations of Oreochromis niloticus. Water Air Soil Pollut., 227, 6:206. http://dx.doi.org/10.1007/s11270-016-2908-xSearch in Google Scholar

Abdel-Tawwab M., Mousaad M.N., Sharafeldin K.M., Ismaiel N.E. (2013). Changes in growth and biochemical status of common carp, Cyprinus carpio L. exposed to water-born zinc toxicity for different periods. Int. Aquat. Res., 5, 1:11. https://doi.org/10.1186/2008-6970-5-11Search in Google Scholar

Almeida J.A., Diniz Y.S., Marques S.F.G., Faine L.A., Ribas B.O., Burneiko R.C., Novelli, E.L.B. (2002). The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination. Environ. Int., 27, 8:673-679. https://doi.org/10.1016/S0160-4120(01)00127-1Search in Google Scholar

AOAC (2012). Association of official analytical chemists. Official methods of analysis. 19th edition, suite 500, 481 north Frederick Avenue, Gaithersburg, Maryland, 20877-2417, USA.Search in Google Scholar

APHA (2005). Standard Methods for the Examination of Water and Wastewater. 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC.Search in Google Scholar

Asaikkutti A., Bhavan P.S., Vimala K., Karthik M., Cheruparambath P. (2016). Effect of different levels dietary vitamin C on growth performance, muscle composition, antioxidant and enzyme activity of freshwater prawn, Macrobrachium malcolmsonii. Aquac. Rep., 3, 1:229-236. https://doi.org/10.1016/j.aqrep.2016.04.002Search in Google Scholar

Auffan M., Rose J., Bottero J.Y., Lowry G.V., Jolivet J.P., Wiesner M.R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol., 4, 10:634-641. https://doi.org/10.1038/nnano.2009.242Search in Google Scholar

Bebianno M.J., Geret F., Hoarau P., Serafim M.A., Coelho M.R., Gnassia-Barelli M., Romeo M. (2004). Biomarkers in Ruditapes decussatus: a potential bioindicator species. Biomarkers., 9, 4-5: 305-330. https://doi.org/10.1080/13547500400017820Search in Google Scholar

Cakmak G., Togan I., Severcan F. (2006). 17β-Estradiol induced compositional, structural and functional changes in rainbow trout liver, revealed by FT-IR spectroscopy: a comparative study with nonylphenol. Aquat. Toxicol., 77, 1: 53-63. https://doi.org/10.1016/j.aquatox.2005.10.015Search in Google Scholar

Chang Y.N., Zhang M., Xia L., Zhang J., Xing G. (2012). The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials., 5, 12: 2850-2871. https://doi.org/10.3390/ma5122850Search in Google Scholar

Choi S.W., Benzie I.F.F., Collins A.R., Hannigan B.M., Strain J.J. (2004). acute interactive effects on biomarkers of antioxidant defence and oxidative stress, Mutat. Res. Fundam. Mol. mechanisms mutagen. 551, 1-2: 109-117. https://doi.org/10.1016/j.mrfmmm.2004.03.006Search in Google Scholar

Chupani L., Niksirat, H., Velíšek J., Stará A., Hradilová Š., Kolařík J., Zusková E. (2018). Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): Tissue accumulation and physiological responses. Ecotoxicol. Environ. Saf., 147: 110-116.Search in Google Scholar

Collins D., Luxton T., Kumar, N., Shah S., Walker V.K., Shah V. (2012). Assessing the impact of copper and zinc oxide nanoparticles on soil: a field study. PLoS One., 7, 8:e42663. https://doi.org/10.1371/journal.pone.0042663Search in Google Scholar

De Andrade J.I.A., Ono E.A., de Menezes G.C., Brasil E.M., Roubach R., Urbinati E.C., Tavares-Dias M., Marcon J.L., Affonso E.G. (2007). Influence of diets supplemented with vitamins C and E on pirarucu (Arapaima gigas) blood parameters. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol., 146, 4: 576-580. https://doi.org/10.1016/j.cbpa.2006.03.017Search in Google Scholar

Ebuehi O.A.T., Ogedegbe R.A., Ebuehi O.M. (2012). Oral Administration of Vitamin C and Vitamin E ameliorates Lead-induced Hepatotoxicity and Oxidative Stress in the Rat Brain. Nig. Q. J. Hosp. Med., 22, 2: 85-90. https://pubmed.ncbi.nlm.nih.gov/23175903/Search in Google Scholar

El-Sayed A.F.M. (2006). Tilapia Culture. Oceanography Department, Faculty of Science, Alexandria University, Egypt. CABI Publishing Int. J. Environ. Monit. Annul., 1, 1 :27-33.Search in Google Scholar

El-Shebly A.A. (2009). The Role of Antioxidant (Vitamin E) in the Control of Lead (Pb) Pollution and Ehancement of Growth Within Nile Tilapia (Oreochromis niloticus). Int.J. Appl.Res.Vet.M., 7, 3: 97. https://www.jarvm.com/articles/Vol7Iss3/VitamenE%2097-101.pdfSearch in Google Scholar

Farsani H.G., Doria H.B., Jamali H., Hasanpour S., Mehdipour N., Rashidiyan G. (2017). The protective role of vitamin E on Oreochromis niloticus exposed to ZnONP. Ecotoxicol. Environ. Saf., 145: 1-7. https://doi.org/10.1016/j.ecoenv.2017.07.005Search in Google Scholar

Gaikwad S.A. (1981). Toxicity studies with Thiodan 35 EC and Phenyl mercuric acetate on T. mossambica (Peters) Ph. D (Doctoral dissertation, Thesis, Univ. of Bombay).Search in Google Scholar

García-Alonso J., Rodriguez-Sanchez N., Misra S.K., Valsami-Jones E., Croteau M.N., Luoma S.N., Rainbow P.S. (2014). Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii. Sci. Total Environ., 476: 688-695. https://doi.org/10.1016/j.scitotenv.2014.01.039Search in Google Scholar

Garcia-Santos S., Fontaínhas-Fernandes A., Wilson J.M. (2006). Cadmium tolerance in the Nile tilapia (Oreochromis niloticus) following acute exposure: assessment of some ionoregulatory parameters. Environ. Toxicol. Int. J., 21, 1: 33-46. https://doi.org/10.1002/tox.20152Search in Google Scholar

Ghazally K.S. (1988). The bioaccumulation of potential heavy metals in the tissues of the Egyptian edible marine animals. Part 1. Crustaceans [1988], Bull. Natl. Inst. Oceanogr. Fish., (Egypt) 14, 2: 71-77.Search in Google Scholar

Ghazi S., Diab A. M., Khalafalla M. M., Mohamed R. A. (2021). Synergistic Effects of Selenium and Zinc Oxide Nanoparticles on Growth Performance, Hemato-biochemical Profile, Immune and Oxidative Stress Responses, and Intestinal Morphometry of Nile Tilapia (Oreochromis niloticus). Biol. Trace Elem. Res., 1-11. https://doi.org/10.1007/s12011-021-02631-3Search in Google Scholar

Hao L., Chen L., Hao J., Zhong N. (2013). Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotoxicol. Environ. Saf., 91: 52-60. https://doi.org/10.1016/j.ecoenv.2013.01.007Search in Google Scholar

Ibrahim D., Neamat-Allah A. N., Ibrahim S. M., Eissa H. M., Fawzey M. M., Mostafa D. I., Abd El-Kader S. A., Khater S. I., Khater S. I. (2021). Dual effect of selenium loaded chitosan nanoparticles on growth, antioxidant, immune related genes expression, transcriptomics modulation of caspase 1, cytochrome P450 and heat shock protein and Aeromonas hydrophila resistance of Nile Tilapia (Oreochromis niloticus). Fish Shellfish Immunol., 110: 91-99. https://doi.org/10.1016/j.fsi.2021.01.003Search in Google Scholar

Jim F., Garamumhango P., Musara C. (2017). Comparative analysis of nutritional value of Oreochromis niloticus (Linnaeus), Nile tilapia, meat from three different ecosystems. J. Food Qual., 2017. https://doi.org/10.1155/2017/6714347Search in Google Scholar

Karuppasamy R. (2004). Evaluation of Hg concentration in the tissue of fish Channa punctatus (Bloch.) in relation to short and long-term exposure to phenyl mercuric acetate. J. Plat. Jubilee AU., 40: 197-204.Search in Google Scholar

Kaya H., Aydin F., Gürkan M., Yilmaz, S., Ates M., Demi,V., Arslan Z. (2015). Effects of zinc oxide nanoparticles on bioaccumulation and oxidative stress in different organs of tilapia (Oreochromis niloticus). Environ. Toxicol. Pharmacol., 40, 3: 936-947.Search in Google Scholar

Kaya H., Aydın F., Gürkan M., Yılmaz S., Ates M., Demir V., Arslan Z. (2016). A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): Organ pathologies, osmoregulatory responses and immunological parameters. Chemosphere, 144: 571-582.Search in Google Scholar

Khoei A. J. (2021). Evaluation of potential immunotoxic effects of iron oxide nanoparticles (IONPs) on antioxidant capacity, immune responses and tissue bioaccumulation in common carp (Cyprinus carpio). Comp. Biochem. Phys. C., 244: 109005. https://doi.org/10.1016/j.cbpc.2021.109005Search in Google Scholar

Kori-Siakpere O., Ubogu E.O. (2008). Sublethal haematological effects of zinc on the freshwater fish, Heteroclarias sp.(Osteichthyes: Clariidae). Afr. J. Biotechnol., 7, 12: 2068-2073. https://doi.org/10.5897/AJB07.706Search in Google Scholar

Ma H., Williams P.L., Diamond S.A. (2013). Ecotoxicity of manufactured ZnO nanoparticles–a review. Environ. Pollut., 172: 76-85. https://doi.org/10.1016/j.envpol.2012.08.011Search in Google Scholar

Mahboub H.H., Beheiry R.R., Shahin S.E., Behairy A., Khedr M.H.E., Ibrahim S.M., Elshopakey G.E., Daoush W.M., Altohamy D.E., Ismail T.A., El-Houseiny W. (2021). Adsorptivity of mercury on magnetite nano-particles and their influences on growth, economical, hemato-biochemical, histological parameters and bioaccumulation in Nile tilapia (Oreochromis niloticus). Aquat. Toxicol., 235: 105828. doi:10.1016/j.aquatox.2021.105828Search in Google Scholar

Mahboub H.H., Shahin K., Zaglool A.W., Roushdy E.M., Ahmed S.S.A. (2020). Efficacy of nano zinc oxide dietary supplements on growth performance, immunomodulation and disease resistance of African Catfish, Clarias gariepinus. Dis. Aquat. Org., 142: 147-160. DOI: https://doi.org/10.3354/dao003531Search in Google Scholar

Mansouri B., Johari S. A., Azadi N. A., Sarkheil M. (2018). Effects of waterborne ZnO nanoparticles and Zn2+ ions on the gills of rainbow trout (Oncorhynchus mykiss): bioaccumulation, histopathological and ultrastructural changes. Turk. J. Fish. Aquat. Sci., 18, 5: 739-746.Search in Google Scholar

Mekkawy I.A.A., Mahmoud U.M., Wassif E.T., Naguib M. (2012). Protective roles of tomato paste and vitamin E on cadmium-induced histological and histochemical changes of liver of Oreochromis niloticus (Linnaeus, 1758). J. Fish. Aquat. Sci., 7, 4: 240. http://dx.doi.org/10.3923/jfas.2012.240.265Search in Google Scholar

Merrill A., Watt B.K. (1973). Energy Value of Foods: Basis and Derivation. Agriculture Handbook, Agricultural Research Service, Washington DC, USA.Search in Google Scholar

Mohamed A.S., Soliman H.A., Ghannam H.E. (2021). Ameliorative effect of vitamins (E and C) on biochemical alterations induced by sublethal concentrations of zinc oxide bulk and nanoparticles in Oreochromis niloticus. Comp. Biochem. Phys. C., 108952. https://doi.org/10.1016/j.cbpc.2020.108952Search in Google Scholar

Neamat-Allah A.N.F., Mahmoud E.A., Abd El Hakim Y. (2019). Efficacy of dietary nanoselenium on growth, immune response, antioxidant, transcriptomic profile and resistance of Nile tilapia, Oreochromis niloticus against Streptococcus iniae infection. Fish Shellfish Immunol., 94: 280-287 https://doi.org/10.1016/j.fsi.2019.09.019.Search in Google Scholar

Palaniappan P.R., Nishanth T., Renju V.B. (2010). Bioconcentration of zinc and its effect on the biochemical constituents of the gill tissues of Labeo rohita: An FT-IR study. Infrared Phys. Technol., 53, 2: 103-111. https://doi.org/10.1016/j.infrared.2009.10.003Search in Google Scholar

Peralta-Videa J.R., Zhao L., Lopez-Moreno M.L., de la Rosa G., Hong J., Gardea-Torresdey J.L. (2011). Nanomaterials and the environment: a review for the biennium 2008–2010. J. Hazard. Mater., 186, 1: 1-15. https://doi.org/10.1016/j.jhazmat.2010.11.020Search in Google Scholar

R Core Team. (2017). R: A language and environment for statistical computing (Version 3.5.1) [Computer software]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.Rproject.org/Search in Google Scholar

Rashidian G., Lazado C.C., Mahboub H.H., Mohammadi-Aloucheh R., Proki´c M.D., Nada H.S., Faggio C. (2021). Chemically and Green Synthesized ZnO Nanoparticles Alter Key Immunological Molecules in Common Carp (Cyprinus carpio) Skin Mucus. Int. J. Mol. Sci., 22, 6: 3270. https://doi.org/10.3390/ijms22063270Search in Google Scholar

Rundle A., Robertson A.B., Blay A.M., Butler K.M., Callaghan N.I., Dieni C.A., MacCormack T.J. (2016). Cerium oxide nanoparticles exhibit minimal cardiac and cytotoxicity in the freshwater fish Catostomus commersonii. Comp. Biochem. Phys. C., 181: 19-26. https://doi.org/10.1016/j.cbpc.2015.12.007Search in Google Scholar

Sahiti H., Bislimi K., Bajgora A., Rexhepi A., Dalo E. (2018). Protective effect of vitamin C against oxidative stress in common carp (Cyprinus carpio) induced by heavy metals. Int. J. Agric. Bio., 7, 2: 71-75. http://www.ijagbio.com/pdf-files/volume-7-no-2-2018/71-75.pdfSearch in Google Scholar

Sahiti H., Bislimi K., Rexhepi A., Dalo E. (2020). Metal accumulation and effect of vitamin C and E in accumulated heavy metals in different tissues in common carp (Cyprinus carpio) treated with heavy metals. Pol. J. Environ. Stud., 29: 1. DOI: https://doi.org/10.15244/pjoes/103354Search in Google Scholar

Sayadi M.H., Pavlaki M.D., Martins R., Mansouri B., Tyler C.R., Kharkan J., Skakari H. (2020). Bioaccumulation and toxicokinetics of zinc oxide nanoparticles (ZnO NPs) co-exposed with graphene nanosheets (GNs) in the blackfish (Capoeta fusca). Chemosphere, 269: 128689Search in Google Scholar

Shahsavani D., Baghishani H., Nourian K. (2017). Effect of thiamine and vitamin C on tissue lead accumulation following experimental lead poisoning in Cyprinus carpio. Iranian J. Vet. Sci. Technol., 9, 1: 39-44. https://doi.org/10.22067/veterinary.v9i1.53864Search in Google Scholar

Siddiki A.N.A., Khair M.U., Naser M.N., Salam M.A. (2018). Biophysicochemical changes in Nile tilapia, Oreochromis niloticus exposed to ZnSO4. 7H2O and ZnCl2 metal toxicant. J. innov. pharm. biol. sci., 5, 2: 113-118. http://www.jipbs.com/VolumeArticles/FullTextPDF/397_JIPBSV5I219N.pdfSearch in Google Scholar

Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Hasan H., Mohamad D. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett., 7, 3: 219-242. https://doi.org/10.1007/s40820-015-0040-xSearch in Google Scholar

Sobha K., Poornima A., Harini P., Veeraiah K. (2007). A study on biochemical changes in the fresh water fish, Catla catla (Hamilton) exposed to the heavy metal toxicant cadmium chloride. Kathmandu Univ. J. of Sci. Eng. Technol., 3, 2: 1-11. https://doi.org/10.3126/kuset.v3i2.2890Search in Google Scholar

Uysal K., Köse E., Bülbül M., Dönmez M., Erdoğan Y., Koyun M., Ömeroğlu Ç., Özmal F. (2009). The comparison of heavy metal accumulation ratios of some fish species in Enne Dame Lake (Kütahya/Turkey). Environ. Monit. Assess., 157, 1-4: 355-362. https://doi.org/10.1007/s10661-008-0540-ySearch in Google Scholar

WHO (2011). The risks and benefits of fish consumption. Report of the joint FAO/WHO expert consultation, 25-29 January 2010, Rome, Italy (No. FIPM/R978 (En)). World Health Organization. p. 50.Search in Google Scholar

Wickham H. (2016). Ggplot2: Elegant graphics for data analysis. New York, NY: Springer-Verlag New York.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo