1. bookAHEAD OF PRINT
Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Dietary silymarin, Silybum marianum extract ameliorates cadmium chloride toxicity in common carp, Cyprinus carpio

Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The present study evaluated the protective effects of silymarin extract (SIE) on cadmium chloride toxicity in common carp, Cyprinus carpio. Four experimental group were considered for the experiment including: SIE0 (control): non-SIE-supplemented fish, SIE1: fish supplemented with 400 mg SIE/kg diet, SIE2: fish supplemented with1400mg SIE/kg diet, SIE3: fish supplemented with 2400 mg SIE/kg diet). Fish were fed experimental diet for 60 days and then exposed to cadmium chloride (1.5 mg/l or 25% of LC50–96 h) and antioxidant defense components and the survival rate assayed. After 60 days feeding trial, total antioxidant capacity (TAC) levels significantly increased (P<0.01) in 1400–2400 mg SIE/kg diet treatments compared to those in control and 400 mg SIE/kg diet treatment. Malondialdehyde (MDA) (P>0.01) and acetylcholinesterase (AChE) levels (P>0.01) remained unchanged during the feeding period in all treatments. Hepatic catalase (CAT) in all SIE supplemented groups and superoxide dismutase (SOD) and glutathione peroxidase (GPx) in 1400–2400 mg SIE/kg diet treatments significantly elevated (P<0.01) in response to SIE. Plasma levels of hepatic metabolic enzymes [alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatine kinase (CK), lactate dehydrogenase (LDH) ] remained unchanged (P>0.01) in all experimental groups over feeding period. After exposure to cadmium chloride, TAC levels were significantly elevated (P<0.01) in all experimental groups. In control and 400 mg SIE/kg diet treatment, TAC showed lower levels (P<0.01) compared to other groups. MDA levels were significantly increased (P<0.01) in control and fish supplemented with 400 and 1400 mg SIE/kg diet. TAC in the fish of 2400 mg SIE/kg diet treatment remained unchanged (P>0.01), following the exposure. CAT (P<0.01), SOD (P<0.01) and GPx (P<0.01) were significantly elevated in response to cadmium chloride in all groups. However, the treatments, 1400 and 2400 mg SIE/kg diet, showed lower increases (P<0.01) of enzymes. AChE activity (P<0.01) in the liver were significantly decreased in control and fish fed 400 and 1400 mg SIE/kg diet. Exposure to cadmium significantly increased (P<0.01) the plasma levels of ALT, AST, ALP and LDH in control and those fed 400 and 1400 mg SIE/kg diet. The findings of the current study indicated that SIE at a rate of 1400–2400mg/kg diet might enhance antioxidant defense and protect hepatocytes against toxic effects of cadmium.

Keywords

Abdel-Tawwab M., Ahmad M.H., Seden M.E., Sakr S.F. (2010). Use of green tea, Camellia sinensis L., in practical diet for growth and protection of Nile tilapia, Oreochromis niloticus (L.), against Aeromonas hydrophila infection. J. World Aquacult. Soc., 41(s2): 203–213.Search in Google Scholar

Ahmadifar E., Kalhor N., Dawood M.A., Ahmadifar M., Shahriari Moghadam M., Yousefi M. (2021). Effects of dietary p-coumaric acid on the growth performance, digestive enzyme activity, humoral immunity and immune-related gene expression in common carp, Cyprinus carpio. Aquacult. Nutr., 27: 747–756.Search in Google Scholar

Ahmadifar E., Yousefi M., Karimi M., Fadaei Raieni R., Dadar M., Yilmaz S., Dawood M.A., Abdel-Latif H.M. (2020). Benefits of dietary polyphenols and polyphenol-rich additives to aquatic animal health: an overview. Rev. Fish. Sci., 1–34.Search in Google Scholar

Al-Asgah N.A., Abdel-Warith A.W.A., Younis E.S.M., Allam H.Y. (2015). Haematological and biochemical parameters and tissue accumulations of cadmium in Oreochromis niloticus exposed to various concentrations of cadmium chloride. Saudi J. Biol. Sci., 22: 543–550.Search in Google Scholar

Alishahi M., Soltani M., Mesbah M., Rad A.E. (2011). Effects of dietary Silybum marianum extract on immune parameters of the common carp (Cyprinus carpio). J. Vet. Res., 66: 255–286.Search in Google Scholar

Almeida J.A., Diniz Y.S., Marques S.F.G., Faine L.A., Ribas B.O., Burneiko R.C., Novelli E.L.B. (2002). The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination. Environ. Int., 27: 673–679.Search in Google Scholar

Aly S.A., Mohamed M.F. (2010). Echinacea purpurea and Allium sativum as immunostimulants in fish culture using Nile tilapia (Oreochromis niloticus). J. Anim. Physiol. Anim. Nutr., 94: e31–e39.Search in Google Scholar

Ansari T.M., Marr I.L., Tariq N. (2004). Heavy metals in marine pollution perspective-a mini review. J. Appl. Sci., 4: 1–20.Search in Google Scholar

Anthony K.P., Saleh M.A. (2013). Free radical scavenging and antioxidant activities of silymarin components. Antioxidants., 2: 398–407.Search in Google Scholar

Ardó L., Yin G., Xu P., Váradi L., Szigeti G., Jeney Z., Jeney G. (2008). Chinese herbs (Astragalus membranaceus and Lonicera japonica) and boron enhance the non-specific immune response of Nile tilapia (Oreochromis niloticus) and resistance against Aeromonas hydrophila. Aquaculture., 275: 26–33.Search in Google Scholar

Atli G., Ariyurek S.Y., Kanak E.G., Canli M. (2015). Alterations in the serum biomarkers belonging to different metabolic systems of fish (Oreochromis niloticus) after Cd and Pb exposures. Environ. Toxicol. Pharmacol., 40: 508–515.Search in Google Scholar

Ayala A., Muñoz M.F., Argüelles S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longevity, 1–31.Search in Google Scholar

Banaee M., Mehrpak M., Hagi B.B.N., Noori A. (2015). Amelioration of cadmium-induced changes in biochemical parameters of the muscle of Common Carp (Cyprinus carpio) by Vitamin C and Chitosan. Int. J. Aquat. Biol., 3: 362–371.Search in Google Scholar

Banaee M., Sureda A., Shahaf S., Fazilat N. (2015). Protective effects of silymarin extract on malthion-induced zebra cichlid (Cichlasoma nigrofasciatum) hepatotoxicity. Iran. J. Toxicol., 9: 1239–1246.Search in Google Scholar

Basha, P.S., Rani A.U. (2003). Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotoxicol. Environ. Saf., 56: 218–221.Search in Google Scholar

Bhuyan M.S., Islam, M.S. (2017). A critical review of heavy metal pollution and its effects in Bangladesh. Sci. J. Energy Eng., 5: 95–108.Search in Google Scholar

Bricknell I., Dalmo R.A. (2005). The use of immunostimulants in fish larval aquaculture. Fish Shellfish Immunol., 19: 457–472.Search in Google Scholar

Chandra P., Khuda-Bukhsh A.R. (2004). Genotoxic effects of cadmium chloride and azadirachtin treated singly and in combination in fish. Ecotoxicol. Environ. Saf., 58: 194–201.Search in Google Scholar

Choi W.M., Mo W.Y., Wu S.C., Mak N.K., Bian Z.X., Nie X.P., Wong, M.H. (2014). Effects of traditional Chinese medicines (TCM) on the immune response of grass carp (Ctenopharyngodon idella). Aquacult. Int., 22: 361–377.Search in Google Scholar

Chowdhury S., Saikia S.K. (2020). Oxidative stress in fish: a review. J. Sci. Res., 12: 145–160.Search in Google Scholar

Chupani L., Niksirat H., Velíšek J., Stará A., Hradilová Š., Kolařík J., Panáček A., Zusková E. (2018). Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): tissue accumulation and physiological responses. Ecotoxicol. Environ. Saf., 147: 110–116.Search in Google Scholar

Chupani L., Zusková E., Niksirat H., Panáček A., Lünsmann V., Haange S.B., von Bergen M., Jehmlich N. (2017). Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinus carpio L.). Sci. Total Environ., 579: 1504–1511.Search in Google Scholar

Citarasu T., Sivaram V., Immanuel G., Rout N., Murugan V. (2006). Influence of selected Indian immunostimulant herbs against white spot syndrome virus (WSSV) infection in black tiger shrimp, Penaeus monodon with reference to haematological, biochemical and immunological changes. Fish Shellfish Immunol., 21: 372–384.Search in Google Scholar

Claiborne A.L. (2018). Catalase activity. In CRC handbook of methods in oxygen radical research. CRC Press, 283–284.Search in Google Scholar

Dawood M.A., Abdel-Tawwab M., Abdel-Latif H.M. (2020). Lycopene reduces the impacts of aquatic environmental pollutants and physical stressors in fish. Rev. Aquac., 12: 2511–2526.Search in Google Scholar

Deb N., Das S. (2017). Chlorpyrifos toxicity in fish: A Review. Curr. World Environ., 8: 77–84.Search in Google Scholar

dos Santos Miron D., Crestani M., Shettinger M.R., Morsch V.M., Baldisserotto B., Tierno M. A., Moraes G., Vieira V.L.P. (2005). Effects of the herbicides clomazone, quinclorac, and metsulfuron methyl on acetylcholinesterase activity in the silver catfish (Rhamdia quelen) (Heptapteridae). Ecotoxicol. Environ. Saf., 61: 398–403.Search in Google Scholar

Dragun Z., Marijić V.F., Krasnići N., Ramani S., Valić D., Rebok K., Kostov V., Jordanova M., Erk M. (2017). Malondialdehyde concentrations in the intestine and gills of Vardar chub (Squalius vardarensis Karaman) as indicator of lipid peroxidation. Environ. Sci. Pollut. Res., 24: 16917–16926.Search in Google Scholar

Dügenci S.K., Arda N., Candan A. (2003). Some medicinal plants as immunostimulant for fish. J. Ethnopharmacol., 88: 99–106.Search in Google Scholar

Ebrahimi M., Taherianfard M. (2011). The effects of heavy metals exposure on reproductive systems of cyprinid fish from Kor River. Iran. J. Fish. Sci., 10: 13–26.Search in Google Scholar

Ellman G.L., Courtney, K.D., Andres Jr V., Featherstone R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol, 7: 88–95.Search in Google Scholar

Elumalai P., Kurian A., Lakshmi S., Faggio C., Esteban M.A., Ringø E. (2020). Herbal immunomodulators in aquaculture. Rev. Fish. Sci., 1–25.Search in Google Scholar

Fulton M.H., Key P.B. (2001). Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ. Toxicol. Chem., 20: 37–45.Search in Google Scholar

Ghelichpour M., Taheri Mirghaed A., Mirzargar S. S., Joshaghani H., Ebrahimzadeh Mousavi H. (2017). Plasma proteins, hepatic enzymes, thyroid hormones and liver histopathology of Cyprinus carpio (Linnaeus, 1758) exposed to an oxadiazin pesticide, indoxacarb. Aquacult. Res., 48: 5666–5676.Search in Google Scholar

Gill T.S., Tewari H., Pande J. (1991). In vivo and in vitro effects of cadmium on selected enzymes in different organs of the fish Barbus conchonius Ham. (Rosy barb). Comp. Biochem. Physiol. C Toxicol Pharmacol, 100: 501–505.Search in Google Scholar

Guardiola F. A., Dioguardi M., Parisi M.G., Trapani M.R., Meseguer J., Cuesta A., Cammarata M., Esteban M.A. (2015). Evaluation of waterborne exposure to heavy metals in innate immune defences present on skin mucus of gilthead seabream (Sparus aurata). Fish Shellfish Immunol., 45: 112–123.Search in Google Scholar

Güroy B., Mantoğlu S., Kayalı S., Şahin İ. (2014). Effect of dietary Yucca schidigera extract on growth, total ammonia–nitrogen excretion and haematological parameters of juvenile striped catfish Pangasianodon hypophthalmus. Aquacult. Res., 45: 647–654.Search in Google Scholar

Hajirezaee S., Ajdari A., Azhang B. (2021). Metabolite profiling, histological and oxidative stress responses in the grey mullet, Mugil cephalus exposed to the environmentally relevant concentrations of the heavy metal, Pb (NO3) 2. Comp. Biochem. Physiol. C Toxicol Pharmacol, 244: 109004.Search in Google Scholar

Hajirezaee S., Rafieepour A., Shafiei S., Rahimi R. (2019). Immunostimulating effects of Ginkgo biloba extract against toxicity induced by organophosphate pesticide, diazinon in rainbow trout, Oncorhynchus mykiss: innate immunity components and immune-related genes. Environ. Sci. Pollut. Res., 26: 8798–8807.Search in Google Scholar

Heydarnejad M.S., Khosravian-Hemamai M., Nematollahi A. (2013). Effects of cadmium at sub-lethal concentration on growth and biochemical parameters in rainbow trout (Oncorhynchus mykiss). Ir. Vet. J., 66: 1–7.Search in Google Scholar

Janero D.R. (1990). Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biol. Med., 9: 515–540.Search in Google Scholar

Jia R., Cao L., Du J., Xu P., Jeney G., Yin G. (2013). The protective effect of silymarin on the carbon tetrachloride (CCl4)-induced liver injury in common carp (Cyprinus carpio). In Vitro Cell. Dev. Biol. Animal., 49: 155–161.Search in Google Scholar

Jian J., Wu Z. (2004). Influences of traditional Chinese medicine on non-specific immunity of Jian carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol., 16: 185–191.Search in Google Scholar

Jinhui S., Sudong X., Yan N., Xia P., Jiahao Q., Yongjian X. (2019). Effects of microplastics and attached heavy metals on growth, immunity, and heavy metal accumulation in the yellow seahorse, Hippocampus kuda Bleeker. Mar. Pollut. Bull., 149: 110510.Search in Google Scholar

Joksimović D., Perošević A., Castelli A., Pestorić B., Šuković, D., Đurović D. (2020). Assessment of heavy metal pollution in surface sediments of the Montenegrin coast: a 10–year review. J. Soils Sediments., 20: 2598–2607.Search in Google Scholar

Kavitha P., Rao J.V. (2008). Toxic effects of chlorpyrifos on antioxidant enzymes and target enzyme acetylcholinesterase interaction in mosquito fish, Gambusia affinis. Environ. Toxicol. Pharmacol., 26: 192–198.Search in Google Scholar

Khafaga A.F., Naiel M.A., Dawood M.A., Abdel-Latif H.M. (2020). Dietary Origanumvulgare essential oil attenuates cypermethrin-induced biochemical changes, oxidative stress, histopathological alterations, apoptosis, and reduces DNA damage in Common carp (Cyprinus carpio). Aquat. Toxicol., 228: 105624.Search in Google Scholar

Khan M.Z., Law F.C. (2005). Adverse effects of pesticides and related chemicals on enzyme and hormone systems of fish, amphibians and reptiles: a review. Proc. Pak. Acad. Sci., 42: 315–323.Search in Google Scholar

Kohen R., Nyska A. (2002). Invited review: Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol., 30: 620–650.Search in Google Scholar

Křen V., Walterová D. (2005). Silybin and silymarin-new effects and applications. Biomed. Pap., 149: 29–41.Search in Google Scholar

Kvasnička F., Bıba B., Ševčýìk R., Voldřich M., Kratka, J. (2003). Analysis of the active components of silymarin. J. Chromatogr. A., 990: 239–245.Search in Google Scholar

Malekpouri P., Moshtaghie A.A., Kazemian M., Soltani M. (2011). Protective effect of zinc on related parameters to bone metabolism in common carp fish (Cyprinus carpio L.) intoxified with cadmium. Fish Physiol. Biochem., 37: 187–196.Search in Google Scholar

Marklund S., Marklund G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. FEBS J., 47: 469–474.Search in Google Scholar

Miskowiec P., Laptas A., Zieba K. (2015). Soil pollution with heavy metals in industrial and agricultural areas: a case study of Olkusz District. J. Elem., 20: 353–362.Search in Google Scholar

Mohammadi G., Rafiee G., El Basuini M.F., Van Doan H., Ahmed H.A., Dawood M.A., Abdel-Latif H.M. (2020). Oregano (Origanum vulgare), St John'swort (Hypericum perforatum), and lemon balm (Melissa officinalis) extracts improved the growth rate, antioxidative, and immunological responses in Nile tilapia (Oreochromis niloticus) infected with Aeromonas hydrophila. Aquac. Rep., 18: 100445.Search in Google Scholar

Mohammed E., Kamel M., El Iraqi K., Tawfik A.M., Khattab M.S., Elsabagh, M. (2020). Zingiber officinale and Glycyrrhiza glabra, individually or in combination, reduce heavy metal accumulation and improve growth performance and immune status in Nile tilapia, Oreochromis niloticus. Aquacult. Res., 51: 1933–1941.Search in Google Scholar

Nazdar N., Imani A., Noori F., Moghanlou K. S. (2018). Effect of silymarin supplementation on nickel oxide nanoparticle toxicity to rainbow trout (Oncorhynchus mykiss) fingerlings: pancreas tissue histopathology and alkaline protease activity. Iran. J. Sci. Technol. Trans. A: Sci., 42: 353–361.Search in Google Scholar

Nya E. J., Austin B. (2009). Use of dietary ginger, Zingiber officinale Roscoe, as an immunostimulant to control Aeromonas hydrophila infections in common carp, Cyprinus carpio (Walbaum). J. Fish Dis., 32: 971–977.Search in Google Scholar

Pavlov D.D., Chuiko G.M., Gerassimov Y.V., Tonkopiy V. D. (1992). Feeding behavior and brain acetylcholinesterase activity in bream (Abramis brama L.) as affected by DDVP, an organophosphorus insecticide. Comp. Biochem. Physiol. C Toxicol Pharmacol., 103: 563–568.Search in Google Scholar

Pretto A., Loro V.L., Morsch V.M., Moraes, B.S., Menezes C., Clasen B., Hoehne L., Dressler, V. (2010). Acetylcholinesterase activity, lipid peroxidation, and bioaccumulation in silver catfish (Rhamdia quelen) exposed to cadmium. Arch. Environ. Contam. Toxicol., 58: 1008–1014.Search in Google Scholar

Rabie M., Asri Y., Ahmadi K. (2016). Effect of Milk thistle plant, Vitis vinifera extract on immune system of common carp (Oncorhynchus mykiss) challenge by diazinon. Int. J. Aquat. Biol., 4: 208–214.Search in Google Scholar

Rafieepour A., Hajirezaee S., Rahimi R. (2019a). Dietary oregano extract (Origanum vulgare L.) enhances the antioxidant defence in rainbow trout, Oncorhynchus mykiss against toxicity induced by organophosphorus pesticide, diazinon. Toxin Rev., 39: 397–407.Search in Google Scholar

Rafieepour A., Hajirezaee S., Rahimi R. (2019b). Moderating effects of dietary oregano extract (Origanum vulgare) on the toxicity induced by organophosphate pesticide, diazinon in rainbow trout, Oncorhynchus mykiss: metabolic hormones, histology and growth parameters. Turk. J. Fish. Aquat. Sci., 20: 207–219.Search in Google Scholar

Ringø E., Olsen R.E., Vecino J. G., Wadsworth, S., & Song, S. K. (2012). Use of immunostimulants and nucleotides in aquaculture: a review. J. Mar. Sci.: Res. Dev., 2: 104.Search in Google Scholar

Saglam D., Atli G., Canli M. (2013). Investigations on the osmoregulation of freshwater fish (Oreochromis niloticus) following exposures to metals (Cd, Cu) in differing hardness. Ecotoxicol. Environ. Saf., 92: 79–86.Search in Google Scholar

Sen S., Mondal S., Adhikari J., Sarkar D., Bose S., Mukhopadhyay B., Bhattacharya S. (1995). Inhibition of Fish Brain Acetylcholinesterase by Cadmium and Mercury. In Enzymes of the cholinesterase family. Springer, Boston, MA., 369–374.Search in Google Scholar

Sodango T.H., Li X., Sha J., Bao Z. (2018). Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: impacts and mitigation approaches. J. Health. Pollut., 8: 53–70.Search in Google Scholar

Tahar K., Keltoum B. (2011). Effects of heavy metals pollution in soil and plant in the industrial area, West Algeria. J. Korean Chem. Soc., 55: 1018–1023.Search in Google Scholar

Utley H.G., Bernheim F., Hochstein P. (1967). Effect of sulfhydryl reagents on peroxidation in microsomes. Arch. Biochem. Biophys., 118: 29–32.Search in Google Scholar

Vaglio A., Landriscina C. (1999). Changes in liver enzyme activity in the Teleost Sparus aurata in response to cadmium intoxication. Ecotoxicol. Environ. Saf., 43: 111–116.Search in Google Scholar

Van der Oost R., Beyer J., Vermeulen N.P. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol., 13: 57–149.Search in Google Scholar

Van Hai N. (2015). The use of medicinal plants as immunostimulants in aquaculture: a review. Aquaculture, 446: 88–96.Search in Google Scholar

Veisi S., Johari S.A., Tyler C.R., Mansouri, B., Esmaeilbeigi M. (2021). Antioxidant properties of dietary supplements of free and nanoencapsulated silymarin and their ameliorative effects on silver nanoparticles induced oxidative stress in Nile tilapia (Oreochromis niloticus). Environ. Sci. Pollut. Res., 22: 1–9.Search in Google Scholar

Wang J., Zhou H., Wang X., Mai K., He G. (2019). Effects of silymarin on growth performance, antioxidant capacity and immune response in turbot (Scophthalmus maximus L.). J. World Aquacult. Soc., 50(6): 1168–1181.Search in Google Scholar

Yang Q., Li Z., Lu X., Duan Q., Huang L., Bi J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ., 642: 690–700.Search in Google Scholar

Yousafzai A.M., Shakoori A.R. (2011). Hepatic Responses of a Freshwater Fish Against Aquatic Pollution. Pak. J. Zool., 43: 209–221.Search in Google Scholar

Zhang T., Yang M., Pan H., Li S., Ren B., Ren Z., Xing N., Qi L., Ren Q., Xu S. Song J. (2017). Does time difference of the acetylcholinesterase (AChE) inhibition in different tissues exist? A case study of zebra fish (Danio rerio) exposed to cadmium chloride and Deltamethrin. Chemosphere., 168: 908–916.Search in Google Scholar

Zhu F. (2020). A review on the application of herbal medicines in the disease control of aquatic animals. Aquaculture, 28: 735422.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo