1. bookAHEAD OF PRINT
Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Effects of a single-phase fasting period and subsequent re-feeding on compensatory growth, digestive enzyme activities, and antioxidant capacity of Sobaity (Sparidentex hasta) and Yellowfin seabream (Acanthopagrus latus)

Journal Details
License
Format
Journal
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

An eight-week research was carried out to examine the influence of fasting (FA) and refeeding (RF) episodes on the compensatory growth responses (CGR) in sobaity (Sparidentex hasta, 10 g) and yellowfin seabreams (Acanthopagrus latus, 4.3 g) juveniles. Fish were fed with a commercial feed (contained 500 g kg−1 crude protein and 150 g kg−1 crude lipid) as following regimes: control (C, fish were fed three times every day), T1 (two weeks of feeding, one week of FA, and five weeks of RF), T2 (one week of feeding, two weeks of FA and five weeks of RF) and T3 (three weeks of FA and five weeks of RF). Two hundred and forty S. hasta juveniles were stocked into twelve 300-L tanks (20 fish tank−1), and 360 A. latus juveniles were allocated into other 12 tanks (30 fish tank−1). Each treatment was carried out in triplicates for each species, and each tank held only one of the species. The experiment was carried out for both species simultaneously. The weight and length of fish from the four groups were measured individually after the third week (after FA episode) and after eight weeks (after RF episode). After finishing the RF episode (eighth week), six fish of each tank were sacrificed with an overdose of 2-phenoxyethanol (1000 mg L−1), and the liver and the whole gut of the sacrificed fish were sampled, dissected, and then kept in a freezer (−80 °C) until further analyses. Survival rate was decreased in S. hasta juveniles with increasing the FA period mainly due to their cannibalistic behavior, which was triggered by starvation, but it was not affected in A. latus. The fasted groups in both species were significantly lost their weight after FA episodes. After five weeks of RF, S. hasta showed full compensatory growth response; meanwhile A. latus had a partial compensatory response (P<0.05). Hepatosomatic index value decreased after the FA period in both species, but it was restored to the normal level after RF phase. The activities of liver catalase, superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase were increased in T2 group in S. hasta, but liver antioxidant enzymes were not affected in A. latus. In both species, the amount of the lipid peroxidation was significantly increased in the liver of fish groups subjected to T2 or T3 compared to T1 and control groups (P < 0.05). Liver alanine aminotransferase (ALT) and alkaline phosphatase (ALP) in S. hasta fasted for two weeks were higher than the other groups. The activities of trypsin, chymotrypsin, α-amylase, and lipase in S. hasta fasted for a week (T1) were higher than control. In addition, the activities of trypsin and chymotrypsin in A. latus fasted for two or three weeks were lower than C and T1 groups. The activity of ALP was increased with increasing FA period in both species. The findings of the present study showed that single-phase FA episodes reduce survival and induce oxidative stress in S. hasta juveniles; meanwhile A. latus juveniles did not show complete compensatory growth after RF episode.

Keywords

Aebi H. (1984). Catalase in vitro. Method. Enzymol., 105: 121–126.Search in Google Scholar

Abolfathi M., Hajimoradloo A., Ghorbani R., Zamani A. (2012). Effect of starvation and refeeding on digestive enzyme activities in juvenile roach, Rutilus rutilus caspicus. Comp. Biochem. Physiol. A, 161: 166–173.Search in Google Scholar

Ali M., Nicieza A., Wootton R.J. (2003). Compensatory growth in fishes: a response to growth depression. Fish Fisheries, 4: 147–190.Search in Google Scholar

Ashouri G., Mahboobi-Soofiani N., Hoseinifar S.H., Mozanzadeh M.T., Mani A., Khosravi A., Carnevali O. (2020). Compensatory growth, plasma hormones and metabolites in juvenile Siberian sturgeon (Acipenser baerii, Brandt 1869) subjected to fasting and re-feeding. Aquacult. Nutr., 26: 400–409.Search in Google Scholar

Baras E., Jobling M. (2002). Dynamics of intracohort cannibalism in cultured fish. Aquacult. Res., 33: 461–479.Search in Google Scholar

Bavcevic L., Klanjscek T., Karamarko V., Anicic I., Legovic T. (2010). Compensatory growth in gilthead sea bream (Sparus aurata) compensates weight, but not length. Aquaculture, 301: 57–63.Search in Google Scholar

Bélanger F., Blier P.U., Dutil J.D. (2002). Digestive capacity and compensatory growth in Atlantic cod (Gadus morhua). J. Fish Biol., 26, 121–128.Search in Google Scholar

Bertucci J.I., Blanco A.M., Sundarrajan L., Rajeswari J.J., Velasco C., Unniappan S. (2019). Nutrient regulation of endocrine factors influencing feeding and growth in fish. Front. Endocrinol., 10: 83.Search in Google Scholar

Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.Search in Google Scholar

Buege J.A., Aust S.D. (1978). Microsomal lipid peroxidation methods. Method. Enzymol, 52: 302–310.Search in Google Scholar

Cara B., Moyano F.J., Zambonino Infante J.L., Fauvel C. (2007). Trypsin and chymotrypsin as indicators of nutritional status of postweaned sea bass larvae. J. Fish Biol., 70: 1798–1808.Search in Google Scholar

Caruso G., Denaro M.G., Caruso R., Genovese L., Mancari F., Maricchiolo G. (2012). Short fasting and refeeding in red porgy (Pagrus pagrus, Linnaeus 1758): Response of some haematological, biochemical and non specific immune parameters. Marine Environ. Res., 81: 18–25.Search in Google Scholar

Congleton J., Wagner T. (2006). Blood-chemistry indicators of nutritional status in juvenile salmonids. J. Fish Biol., 69: 473–490.Search in Google Scholar

Dar S.A., Srivastava P.P., Varghese T., Gupta S., Gireesh-Babu P. (2018). Effects of starvation and refeeding on expression of ghrelin and leptin gene with variations in metabolic parameters in Labeo rohita fingerlings. Aquaculture, 484: 219–227.Search in Google Scholar

Dar S.A., Srivastava P.P., Varghese T., Nazir M.U., Gupta S., Krishna G. (2019). Temporal changes in superoxide dismutase, catalase, and heat shock protein 70 gene expression, cortisol and antioxidant enzymes activity of Labeo rohita fingerlings subjected to starvation and refeeding. Gene, 692: 94–101.Search in Google Scholar

Davis K.B., Gaylord T.G. (2011). Effect of fasting on body composition and responses to stress in sunshine bass (Morone chrysops × Morone saxatilis). Comp. Biochem. Physiol. A, 158: 30–36.Search in Google Scholar

Dehghani R., Oujifard A., Mozanzadeh M.T., Morshedi V., Bagheri D. (2020). Effects of dietary taurine on growth performance, digestive enzymes activities and skin mucosal immune responses in yellowfin seabream, Acanthopagrus latus. Aquaculture, 517: 734–795.Search in Google Scholar

Erlanger B.F., Kokowsky N., Cohen W. (1961). The preparation and properties of two new chromogenic substrates of trypsin. Archiv. Biochem. Biophys., 95: 271–278.Search in Google Scholar

Eroldoğan O.T., Kumlu M., Kiris G.A., Sezer B. (2006). Compensatory growth response of Sparus aurata following different starvation and refeeding protocols. Aquacult. Nutr., 12: 203–210.Search in Google Scholar

Eroldoğan O.T., Suzer C., Taşbozan O., Tabakoğlu S. (2008). The effects of rate-restricted feeding regimes in cycles on digestive enzymes of gilthead sea-bream, Sparus aurata. Turk. J. Fish. Aquat. Sci., 8: 49–54.Search in Google Scholar

Favero G.C., Gimbo R.Y., Montoya L.N.F., Carneiro D.J., Urbinati E.C. (2020). A fasting period during grow-out make juvenile pacu (Piaractus mesopotamicus) leaner but does not impair growth. Aquaculture, 524: 735242.Search in Google Scholar

Furné M., Morales A.E., Trenzado C.E., Garcĺa-Gallego M., Hidalgo M.C., Domezain A., Rus A.S. (2012). The metabolic effects of prolonged starvation and re-feeding in sturgeon and rainbow trout. J. Comp. Physiol. B, 182: 63–76.Search in Google Scholar

Gaylord T.G., Gatlin D.M. (2001). Dietary protein and energy modifications to maximize compensatory growth of channel catfish (Ictalurus punctatus). Aquaculture, 194: 337–348.Search in Google Scholar

Gawlicka A., Parent B., Horn M.H., Ross N., Opstad I., Torrissen O.J. (2000). Activity of digestive enzymes in yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus): indication of readiness for first feeding. Aquaculture, 184: 303–314.Search in Google Scholar

Gisbert E., Fernández I., Alvaez-González C.A. (2011). Prolonged feed deprivation does not permanently compromise digestive function in migrating European glass eels Anguilla anguilla. J. Fish Biol., 78: 580–592.Search in Google Scholar

Gisbert E., Mozanzadeh M.T., Kotzamanis Y., Estevez A. (2016). Weaning wild flathead grey mullet (Mugil cephalus) fry with diets with different levels of fish meal substitution. Aquaculture, 462: 92–100.Search in Google Scholar

Gisbert E., Nolasco H., Solovyev M. (2018). Towards the standardization of brush border purification and intestinal alkaline phosphatase quantification in fish with notes on other digestive enzymes. Aquaculture, 487: 102–108.Search in Google Scholar

Harpaz S., Hakim Y., Slosman T., Barki A., Karplus I., Eroldoğan O.T. (2005). Effects of different feeding levels during day and/or night on growth and brush border enzyme activity in juvenile Lates calcarifer fish reared in freshwater recirculating tanks. Aquaculture, 248: 325–335.Search in Google Scholar

Henry M., Gasco L., Piccolo G., Fountoulaki E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol., 203: 1–22.Search in Google Scholar

Jaroli D., Sharma B., (2005). Effect of organophosphate insecticide on the organic constituents in liver of Channa punctatuus. Asian J. Exp. Sci., 19: 121–129.Search in Google Scholar

Jobling M., Johansen S.J.S. (1999). The lipostat, hyperphagia and catch-up growth. Aquacult. Res., 30: 473–478.Search in Google Scholar

Jobling M. (2010) Are compensatory growth and catch-up growth two sides of the same coin? Aquacult. Int., 18: 501–510.Search in Google Scholar

Krogdahl A., Bakke-McKellep A.M. (2005). Fasting and refeeding cause rapid changes in intestinal tissue mass and digestive enzyme capacities of Atlantic salmon (Salmo salar L.). Comp. Biochem. Physiol. A, 141: 450–460.Search in Google Scholar

Li Z.H., Xie S., Wang J.X., Chen D.Q. (2007). Effects of intermittent starvation on growth and some digestive enzymes in the shrimp Macrobrachium nipponense. J. Fish. China, 31: 456–462.Search in Google Scholar

Liu X., Xia J., Pang H., Yue G. (2017). Who eats whom, when and why? Juvenile cannibalism in fish Asian Seabass. Aquacult. Fish., 2: 1–9.Search in Google Scholar

Mattila J., Koskela J., Pirhonen J. (2009). The effect of the length of repeated feed deprivation between single meals on compensatory growth of pikeperch Sander lucioperca. Aquaculture, 296: 65–70.Search in Google Scholar

McCord J.M., Fridovich I. (1969). Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem., 244: 6049–6055.Search in Google Scholar

McCue M.D. (2010). Starvation physiology: Reviewing the different strategies animals use to survive a common challenge. Comp. Biochem. Physiol. A, 156: 1–18.Search in Google Scholar

Mohapatra S., Chakraborty T., Reza M.A.N., Shimizu S., Matsubara T., Ohta K. (2017). Short-term starvation and realimentation helps stave off Edwardsiella tarda infection in red sea bream (Pagrus major). Comp. Biochem. Physiol. B, 206: 42–53.Search in Google Scholar

Morales A.E., Pérez-Jiménez A., Hidalgo M.C., Abellán E., Cardenete G. (2004). Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp. Biochem. Physiol. C, 139: 153–161.Search in Google Scholar

Mozanzadeh M.T., Marammazi J.G., Yaghoubi M., Agh N., Pagheh E., Gisbert E. (2017 a). Macronutrient requirements of silvery black porgy (Sparidentex hasta): a comparison with other farmed sparid species. Fishes, 2: 5.Search in Google Scholar

Mozanzadeh M.T., Marammazi J.G., Yaghoubi M., Yavari V., Agh N., Gisbert E. (2017 b). Somatic and physiological responses to cyclic fasting and re-feeding periods in sobaity sea bream (Sparidentex hasta, Valenciennes 1830). Aquacult. Nutr., 23: 181–191.Search in Google Scholar

Mozanzadeh M.T., Zabayeh Najafabadi M., Torfi M., Safari O., Oosooli R., Mehrjooyan S., Pagheh E., Hoseini S.J., Saghavi H., Monem J., Gisbert E. (2020). Compensatory growth of Sobaity (Sparidentex hasta) and yellowfin seabreams (Acanthopagrus latus) relative to feeding rate during nursery phase. Aquacult. Nutr., 27: 468–476.Search in Google Scholar

Navarro I., Gutierrez J. (1995). Fasting and starvation. In: Biochemistry and molecular biology of fishes, Hochachka P.W., Mommsen T.P. (eds). Elsevier, Amsterdam, pp. 393–434.Search in Google Scholar

Noguchi T., Cantor A.H., Scott M.L. (1973). Mode of action of selenium and vitamin E in prevention of exudative diathesis in chicks. J. Nutr., 103: 1502–1511.Search in Google Scholar

Oh S.Y., Noh C.H., Cho S.H. (2007). Effect of restricted feeding regimes on compensatory growth and body composition of red Sea Bream, Pagrus major. J. World Aquacult. Soc., 38: 443–449.Search in Google Scholar

Oh S.Y., Kim M.S., Kwon J.Y., Venmathi Maran B.A. (2013). Effects of feed restriction to enhance the profitable farming of blackhead seabream (Acanthopagrus schlegelii schlegelii) in sea cages. Ocean Sci. J., 48: 263–268.Search in Google Scholar

Park I., Hur J.W., Choi J.W. (2012). Hematological responses, survival, and respiratory exchange in the olive flounder, Paralichthys olivaceus, during starvation. Asian Aus. J. Anim. Sci., 25: 1276–1284.Search in Google Scholar

Pascual P., Pedrajas J.R., Toribio F., López-Barea J., Peinado J. (2003). Effect of food deprivation on oxidative stress biomarkers in fish (Sparus aurata). Chem. Biol. Interact., 145: 191–199.Search in Google Scholar

Peres H., Santos S., Oliva-Teles A. (2011). Lack of compensatory growth response in gilthead seabream (Sparus aurata) juveniles following starvation and subsequent re-feeding. Aquaculture, 318: 384–388.Search in Google Scholar

Pérez-Jiménez A., Guedes M.J., Morales A.E., Oliva-Teles A., (2007). Metabolic responses to short starvation and refeeding in Dicentrarchus labrax. Effect of dietary composition. Aquaculture, 265: 325–335.Search in Google Scholar

Pérez-Jiménez A., Cardenete G., Hidalgo M.C., García-Alcázar A., Abellán E., Morales A.E. (2012). Metabolic adjustments of Dentex dentex to prolonged starvation and re-feeding. Fish Physiol. Biochem., 38: 1145–1157.Search in Google Scholar

Rodríguez A., Gisbert E., Castelló-Orvay F. (2005). Nutritional condition of Anguilla anguilla starved at various salinities during the elver plase. J. Fish Biol., 67: 521–534.Search in Google Scholar

Rueda F.M., Martinez F.J., Zamora S., Kentouri M., Divanach P. (1998). Effect of fasting and refeeding on growth and body composition of red porgy (Pagrus pagrus L.). Aquacult. Res., 29: 447–452.Search in Google Scholar

Sakakura Y., Tsukamoto K. (1998). Effects of density, starvation, and size difference on aggressive behaviour in juvenile yellowtails (Seriola quinqueradiata). J. Appl. Ichthyol., 14: 9–13.Search in Google Scholar

Tamadoni R., Nafisi Bahabadi M., Morshedi V., Bagheri D., Mozanzadeh M.T. (2020). Effect of short term fasting and refeeding on growth, digestive enzyme activities and antioxidant defense in yellowfin seabream, Acanthopagrus latus (Houttuyn, 1782). Aquacult. Res., 51: 1437–1445.Search in Google Scholar

Tian X.L., Qin J.G. (2004). Effects of previous ration restriction on compensatory growth in barramundi (Lates calcarifer). Aquaculture, 235: 273–283.Search in Google Scholar

Triebanbach S.P., Smoker W.W., Beckman B.R., Focht R. (2009). Compensatory growth after winter food deprivation in hatchery-produced Coho salmon and Chinook salmon smolts. North Am. Jo. Aquacult., 71: 384–399.Search in Google Scholar

Viegas I., Caballero-Solares A., Rito J., Giralt M., Pardal M.A., Metón I., Jones J.G., Baanante I.V. (2014). Expressional regulation of key hepatic enzymes of intermediary metabolism in European seabass (Dicentrarchus labrax) during food deprivation and refeeding. Comp. Biochem. Physiol. A, 174: 38–44.Search in Google Scholar

Waagbø R., Jørgensen S.M., Timmerhaus G., Breck O., Olsvik P.A. (2017). Short-term starvation at low temperature prior to harvest does not impact the health and acute stress response of adult Atlantic salmon. Peer J., 5: e3273.Search in Google Scholar

Won E.T., Borski R.J. (2013). Endocrine regulation of compensatory growth in fish. Front. Endocrinol., 4: 74.Search in Google Scholar

Worthington Biochemical Corporation (1991). Worthington Enzyme Manual: Enzymes, Enzyme Reagents, Related Biochemical. Worthington Biochemical Corp., Freehold, New Jersey.Search in Google Scholar

Xiao J.-X., Zhou F., Yin N., Zhou J., Gao S., Li H., Shao Q.-J., Xu J. (2013). Compensatory growth of juvenile black sea bream, Acanthopagrus schlegelii, with cyclical feed deprivation and refeeding. Aquacult. Res., 44: 1045–1057.Search in Google Scholar

Yang S., He K., Yan T., Wu H., Zhou J., Zhao L., Wang Y., Gong K. (2019). Effect of starvation and refeeding on oxidative stress and antioxidant defenses in Yangtze sturgeon (Acipenser dabryanus). Fish Physiol. Biochem., 45: 987–995.Search in Google Scholar

Yarmohammadi M., Pourkazemi M., Kazemi R., Pourdehghani M., Hassanzadeh M., Azizzadeh L. (2015). Effects of starvation and re-feeding on some hematological and plasma biochemical parameters of juvenile Persian sturgeon, Acipenser persicus Borodin, 1897. Caspian J. Environ. Sci., 13: 129–140.Search in Google Scholar

Yilmaz H.A., Eroldoğan O.T. (2011). Combined effects of cycled starvation and feeding frequency on growth and oxygen consumption of Gilthead seabream, Sparus aurata. J. World Aquacult. Soc., 42: 522–529.Search in Google Scholar

Zeng L.Q., Li F.J., Li X-M., Cao Z.D., Fu S.J., Zhang Y.G. (2012). The effects of starvation on digestive tract function and structure in juvenile southern catfish (Silurus meridionalis Chen). Comp. Biochem. Physiol. A, 162: 200–211.Search in Google Scholar

Zhang X.D., Zhu Y.F., Cai L.S., Wu T.X. (2008). Effects of fasting on the meat quality and antioxidant defenses of market-size farmed large yellow croaker (Pseudosciaena crocea). Aquaculture, 280: 136–139.Search in Google Scholar

Zheng Y., Cheng X., Tang H. (2015). Effects of starvation and refeeding on digestive enzyme activity of Megalobramapellegrini. Adv. J. Food Sci. Technol., 7: 230–234.Search in Google Scholar

Zheng J.L., Zhu Q., Shen B., Zeng L., Zhu A.Y., Wu C.W. (2016). Effects of starvation on lipid accumulation and antioxidant response in the right and left lobes of liver in large yellow croaker Pseudosciaena crocea. Ecol. Indicat., 66: 269–274.Search in Google Scholar

Ziheng F., Xiangli T., Shuanglin D. (2017). Effects of starving and re-feeding strategies on the growth performance and physiological characteristics of the juvenile tongue sole (Cynoglossus semilaevis). J. Ocean Univ. China, 16: 517–524.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo