1. bookVolume 31 (2019): Issue 1 (December 2019)
Journal Details
License
Format
Journal
First Published
20 Jun 2020
Publication timeframe
1 time per year
Languages
English
access type Open Access

Using LiDAR Point Clouds in Determination of the Scots Pine Stands Spatial Structure Meaning in the Conservation of Lichen Communities in “Bory Tucholskie” National Park

Journal Details
License
Format
Journal
First Published
20 Jun 2020
Publication timeframe
1 time per year
Languages
English
Abstract

The aim of the research carried out in 2018 and financed by the Forest Fund was the analysis of biometric features and parameters of pine stands in the area of the “Bory Tucholskie” National Park (PNBT), where a program of active protection of lichen was initiated in 2017. Environmental analyses were conducted in relation to selected biometric features of trees and stands using laser scanning (LiDAR), including ULS (Unmanned Laser Scanning; RIEGL VUX-1) and TLS (Terrestrial Laser Scanning; FARO FOCUS 3D; X130). Thanks to the application of LiDAR technology, the structure of pine stands was precisely determined by means of a series of descriptive statistics characterizing the 3D spatial structure of vegetation. Using the Trees Crown Model (CHM), the analysis of the volume of tree crowns and the volume of space under canopy was performed. For the analysed sub-compartments, GIS solar analyses were carried out for the solar energy reaching the canopy and the ground level due to active protection of lichen. Multispectral photos were obtained using a specialized RedEdge-M camera (MicaSense) mounted on the UAV multi rotor platform Typhoon H520 (Yuneec). Flights with a thermal camera were also performed in order to detect places on the ground with high temperature. Plant indices: NDVI, NDRE, GNDVI and GRVI were also calculated for sub-compartments. The data obtained in 2017 and 2018 were the basis for spatial and temporal analyses of 4-D changes in stands which were related to the removal of some trees and organic layer (litter, moss layer).

Keywords

Banaszak, J., & Tobolski, K., (2002). Park Narodowy „Bory Tucholskie”. Park Narodowy „Bory Tucholskie”.Search in Google Scholar

Bienert, A., Scheller, S., Keane, E., Mullooly, G., & Mohan, F. (2006) Application of terrestrial laserscanners for the determination of forest inventory parameters. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5).Search in Google Scholar

Danielewicz, W., & Pawlaczyk, P., (2004). Śródlądowy bór chrobotkowy. [w:] Lasy i bory. Poradniki ochrony siedlisk i gatunków Natura 2000 – podręcznik metodyczny, tom 5. Herbich J. (red.), Ministerstwo Środowiska, Warszawa, 289–298.Search in Google Scholar

Dingová Košuthová, A., Svitková, I., Pišut, I., Senko, D., & Valachovič, M. (2013). The impact of forest management on changes in composition of terricolous lichens in dry acidophilous Scots pine forests. Lichenologist, 45, 413-425.Search in Google Scholar

Ermakov, N., & Morozova, O., (2011). Syntaxonomical survey of boreal oligotrophic pine forests in northern Europe and Western Siberia. Applied Vegetation Science, 14, 524–536.Search in Google Scholar

Hopkinson, C., Chasmer, L., Young-Pow, C., Treitz, P., (2004). Assessing forest metrics with a ground-based scanning lidar. Canadian Journal of Forest Research, 34(3), 573-583.Search in Google Scholar

Hyyppä, J., Hyyppä, H., Litkey, P., Yu, X., Haggrén, H., Rönnholm, P., Pyysalo, U., Pitkanen, J., & Maltamo, M., (2004). Algorithms and methods of airborne laser-scanning for forest measurements. Thies M., Koch B., Spiecker H. i Weinacker H. (eds.): Laser-Scanners for Forest and Landscape Assessment: Proceedings of the ISPRS Working Group VIII/2. Freiburg, Germany. ISPRS Archives of Photogrammetry and Remote Sensing, 36, 8.Search in Google Scholar

Lipnicki, L. (2003). Porosty Borów Tucholskich. Wydawnictwo Parku Narodowego Bory Tucholskie, Charzykowy.Search in Google Scholar

Maas, H., Bienert, A., Scheller, S., & Keane, E., 2008: Automatic forest inventory parameter determination from terrestrial laser scanner data. International Journal of Remote Sensing, 29(5), 1579-1593.Search in Google Scholar

Maier, B., Tiede, D., & Dorren, L., (2008). Characterising mountain forest structure using landscape metrics on LIDAR-based canopy surface models, Lecture Notes in Geoinformation and Cartography, Object-Based Image Analysis, 625-643.Search in Google Scholar

Maltamo, M., Naesset, E., & Vauhkonen, J., (2014). Forestry Applications of Airborne Laser Scanning. Concepts and Case Studies. Springer.Search in Google Scholar

Matuszkiewicz, W, Matuszkiewicz, J., (1973). Przegląd fitosocjologiczny zbiorowisk leśnych Polski. Cz. 2.Bory sosnowe. Phytocoenosis. Biuletyn Fitosocjologiczny, 2, 273–356.Search in Google Scholar

Mcgaughey, R. J., Carson, W., Reutebuch, S., & Andersen, H. E. (2004). Direct measurement of individual tree characteristics from lidar data. Proceedings of the Annual ASPRS Conference. Denver. American Society of Photogrammetry and Remote Sensing.Search in Google Scholar

Naesset, E., (2002). Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment, 80, 80-99.Search in Google Scholar

Thies, M., Pfeifer, N., Winterhalder, D., & Gorte, B., (2004). Three-dimensional reconstruction of stems for assessment of taper, sweep and lean based on laser scanning of standing trees. Scandinavian Journal of Forest Research, 19(6), 571-581.Search in Google Scholar

Watt, P.J., Donoghue, D.N.M., (2005). Measuring forest structure with terrestrial laser scanning. International Journal of Remote Sensing, 26(7), 1437-1446.Search in Google Scholar

Węgrzyn, M., & Masłowska, M., (2010). 91T0 Śródlądowy bór chrobotkowy. [W]: Monitoring siedlisk przyrodniczych. Przewodnik metodyczny. Część pierwsza, Mróz W. (Red), Inspekcja Ochrony Środowiska, Biblioteka Monitoringu Środowiska, Warszawa, pp. 295–311.Search in Google Scholar

Węgrzyn, M., & Wietrzyk, P. (2017). Stan zachowania i propozycje czynnej ochrony borów chrobotkowych (zespół Cladonio-Pinetum) w Parku Narodowym „Bory Tucholskie”. Chrońmy Przyrodę Ojczystą, 73(1), 17–29.Search in Google Scholar

Wężyk P., Hawryło P., & Szostak M. (2016). Determination of the number of trees in the Bory Tucholskie National Park using crown delineation of the canopy height models derived from aerial photos matching and Airborne Laser Scanning data. Archiwum Fotogrametrii, Kartografii i Teledetekcji, 28, 137-156.Search in Google Scholar

Wężyk, P., Hawryło, P., Zięba-Kulawik, K., Szostak, M., Kuzera, J., Turowska, A., Bura, M., Wietrzyk, P., Kołodziejczyk, J., Fałowska, P., & Węgrzyn M. (2018). Wykorzystanie chmur punktów LiDAR w ochronie czynnej borów chrobotkowych w Parku Narodowym “Bory Tucholskie”. Archiwum Fotogrametrii, Kartografii i Teledetekcji, vol. 30, s. 27-41, ISSN 2083-2214, eISSN 2391-9477.Search in Google Scholar

Wężyk, P., Kozioł, K., Glista, M., & Pierzchalski, M. (2007). Terrestrial laser scanning versus traditional forest inventory. First results From the Polish forests. ISPRS Volume XXXVI, Part 3/W52. ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, September 12-14, 2007, Finland, 424-429Search in Google Scholar

Wężyk, P., & Tompalski, P. (2010). Określanie parametru zagęszczenia drzew w drzewostanach sosnowych na podstawie analizy chmury punktów naziemnego skaningu laserowego Roczniki Geomatyki, 8, 7(43), 83-90.Search in Google Scholar

Wężyk, P., Tompalski, P., de Kok, R., Szostak, M., & Kukawski, M. (2010). Metoda szacowania liczby drzew w drzewostanie z wykorzystaniem danych ALS i ortoobrazów. Sylwan, 154, 773–782.Search in Google Scholar

Wężyk, P., Tompalski P., Szostak, M., Glista, M., & Pierzchalski, M. (2008). Describing the selected canopy layer parameters of the Scots pine stands using ALS data. 8th International conference on LiDAR applications in forest assessment and inventory. SiliviLaser 2008, Edinburgh, 636-645.Search in Google Scholar

Zhen, Z., Quackenbush, L.J., & Zhang, L. (2016). Trends in Automatic Individual Tree Crown Detection and Delineation—Evolution of LiDAR Data. Remote Sensing, 8, 1–26.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo