The properties of viscose\TiO2 and viscose\TiO2\germanium dioxide (GeO2) are investigated and compared. The elemental mapping analysis using a field emission scanning electron microscope (FESEM) shows the excellent distribution of nanomaterials, while the energy dispersive X-ray (EDX) confirms its existence. The 500 s cycle of rubbing test indicates that the abrasion resistance of treated samples improves significantly. In addition, the doping of nano GeO2 enhances the strength of the treated samples. Furthermore, the thermal behavior of the treated samples, characterized by differential scanning calorimeter (DSC), results in a higher crystallization temperature and doping GeO2 increases the thermal properties of viscose in comparison with nano TiO2. The study of ultraviolet blocking indicates that doping GeO2 can improve the transmission of ultraviolet even from TiO2.
Keywords
- Germania
- viscose
- physical properties
In the past decade, researches have been conducted on immobilizing nanomaterials and nanostructures on fiber or fabric to obtain new properties in the final product. Recently, the ultraviolet (UV) protection activity of fibers or fabrics has gained much attention because of its ability to prevent diseases [1,2,3,4,5,6]. Many studies have reported the UV protection activity of nano titania and its virtuous properties on fabrics [7,8,9]. This paper has made an attempt to enhance this property.
The main application of titania is as an adsorbent, catalytic support, and in pigments. This nanomaterial has many applications such as in photo degradation, as a bactericidal, and for its UV blocking property and low toxicity [10,11,12,13,14].
Germanium dioxide (Germania; GeO2) is an inorganic compound which forms a passive layer on pure germanium in contact with oxygen with low toxicity, as well as consists of a hexagonal and tetragonal crystalline morphology. There is a lack of scientific research on the effect of Germania on textile property; this study has made an attempt to study and investigate the physical properties of viscose crosslinked with Germania [15,16,17,18]. In the crosslink method, free carboxylic groups (two groups) must be available to interlink the nanoparticle and cellulose. In this method, a covalent ester bond is set up and a hydroxyl group of cellulose will perform esterification by one carboxylic group of the crosslink factor while the other carboxylic group of the crosslink factor connects to the nanoparticles [19].
Viscose is regenerated natural fiber, whose physical properties [20,21,22]are used as a renewable resource for the development of environment friendly, biocompatible, and functional materials. Viscose is made of cellulose and the cellulosic textiles present a polar surface which is associated with the hydroxylated nature constituting of hydroglucose units. This property is responsible for the high hydrophilicity of cellulose, which enables the establishment of strong hydrogen bonding between fibers and the setting up of three-dimensional fiber-based structures. It is worth mentioning that the existence of these hydrophilic groups can develop nucleation and the formation of inorganic phases like titania and metal oxides, helping in generating the multifunctional properties of viscose [23,24,25,26]. The thermal behavior of viscose is of importance in the textile industry. The differential scanning calorimetry (DSC) is a thermos analytical method which measures the difference in the amount of heat needed to enhance the temperature of a specimen as a function of temperature [27,28,29,30].
GeO2 (CAS Number 1310538) nanopowder at a density of 4.23 g/cm3 was purchased from Sigma Aldrich. In addition, P-25 nano titanium dioxide was prepared from Degussa. The 100% plain weave bleached viscose fabric with a warp density of 24 yarn/cm and 20 yarn/cm weft and fabric weight of 119.5 g/m2 was prepared by the Yazdbaf Company. Sodium hypo-phosphate and succinic acid were purchased from Merck.
Initially, the viscose fabric was washed with distilled water to remove any impurities. The crosslink method was used to conjugate the nanomaterials and fabric; 3%w/w succinic acid and 2%w/w sodium hypo-phosphate were prepared and the washed viscose fabric was immersed in this solution for 60 min. Then the sample was dried in an oven at a temperature of 170 °C for 2 min. Meanwhile, the GeO2 and TiO2 nanopowders were sonicated in an ultrasonic bath (Euronda ultrasonic bath model Eurosonic 4D, 350 W, 50/60 Hz, Italy) at 40 °C for 50 min at 1% and 2% respectively. The treated fabric immersed in nano solution was sonicated again at 50 °C for 30 min. Later, the finished fabric was heated at 100 °C in an oven for 5 min to fix the nanoparticles on the fabric. Then, the sample was washed with distilled water to remove the unbounded particles. This process was repeated with only nano TiO2. Therefore, two samples of viscose/TiO2 and viscose/TiO2/GeO2 were prepared.
The morphology of the treated samples was investigated by a field emission scanning electron microscope (FESEM; MIRA3-TESCAN). UV transmission of the treated samples was examined by the Perkin Elmer Lambda ultraviolet-visible (UV–vis) spectrophotometer. DSC analyses were conducted by Shimadzu DSC-50 at a heating rate of 10 °C/min.
Abrasion test was done through AATCC TM93. The samples were driven by a rotor along a zigzag course in a circular orbit within a cylindrical chamber, so that it repeatedly impinged on the walls and the abrading liner of the chamber, while at the same time being continuously subjected to rapid, high-velocity impacts. Rubbing test of 500 cycles was done for each sample and the difference in mass of the samples was calculated.
The FESEM method was implemented to study the morphology of nanomaterials coated on the surface of fabric. The voltage and magnification of the device was set to 15 kV and 500x, respectively. Figure 1(a) shows the excellent distribution of nanomaterials and with the absence of aggregation or agglomeration of nanoparticles. It also demonstrates 30 nm as the average particle size of nanomaterials. Therefore, the coating of nanomaterials on the fabric surface is acceptable. However, the energy dispersive X-ray (EDX) spectra of the treated sample show the presence of nano TiO2 and GeO2 (Figure 2). FESEM also demonstrates the distribution of nanoparticles by elemental mapping analysis. Figure 1(B–D), respectively, shows the FESEM of the treated sample; indicates its elemental mapping of Ge; and indicates the elemental mapping of Ti. As shown, the presence and distribution of these two nanoparticles on the surface of fabric is good and monotone.
Figure 1
FESEM images of (A) treated sample, (B) map of the treated sample, (C) elemental mapping of Ge, and (D) elemental mapping of Ti.

Figure 2
EDX image of the treated sample. EDX, energy dispersive X-ray.

Abrasion assessment was done using the rub tester. For the treated and untreated samples, 500 cycles of rubbing test was performed and the weight difference before and after abrasion was calculated. Table 1 illustrates the mean data and abrasion resistance. The results show that the abrasion resistance of the treated sample is higher than that of the untreated sample. Additionally, the abrasion resistance of viscose\TiO2\GeO2 is higher than viscose\TiO2. This can be explained by the mechanical properties of GeO2, which is clearly visible from the FESEM figures, showing that all the surfaces of the treated sample are coated uniformly by nanoparticles. The tensile force of the treated or untreated samples was calculated by ISO 5079-breaking strength test. The results indicate that using nanomaterials increases the strength of viscose (Figure 3). It is worth mentioning that the strength of viscose\TiO2\GeO2 is greater than viscose\TiO2, which indicates that doping of GeO2 can improve the physical properties of fabric.
Figure 3
Strength of sample.

Abrasion resistance of samples
Raw viscose | 3.013 | 2.486 | 82.50 |
Viscose\TiO2 | 2.891 | 2.464 | 85.23 |
Viscose\TiO2\GeO2 | 2.836 | 2.578 | 90.90 |
The DSC method was used to analyze the treated and untreated samples. In this test, the treated and untreated fabrics were rapidly heated to 230 °C and maintained at this temperature for 3 min (to remove any thermal history and stresses). The samples were later cooled at room temperature of 10 °C/min. Figure 4 illustrates the DSC curve of samples. As shown, the exotherms maxima are at 182 °C for the untreated and 187 °C for the treated sample. The crystallization curves occurred while cooling. Comparison of the two spectra reveals that the crystallization peak is shifted toward the high temperature for the treated sample, which contains nanoparticles.
Figure 4
DSC spectra of samples. DSC, differential scanning calorimeter.

UV/Vis transmission of the raw and treated samples was investigated based on the AATCC Test method 183–2004. Figure 5 illustrates the spectra. The irradiation wavelength of 200–800 nm shows that the raw sample has higher transmittance in comparison to the contained nanomaterials. It means that UV protection of the treated samples is better than that of the raw sample. Furthermore, doping GeO2 to the viscose\TiO2 improves the UV blocking remarkably. This is due to the synergetic UV absorption of nano GeO2.
Figure 5
UV/Vis transmission of samples.

Viscose fabric containing nano TiO2 and GeO2 was produced by the crosslink method. Raw sample, viscose\TiO2 and viscose\ TiO2\GeO2 were characterized by FESEM. The nanomaterial particle size was about 30 nm and the EDX analysis proved their existence. Elemental mapping analysis of the samples by FESEM indicates the good distribution of nanoparticles on the surface of viscose fabric. Meanwhile, the thermal behavior of the treated samples was characterized by DSC, resulting in a higher crystallization temperature. The doping of nano GeO2 enhances the thermal properties of viscose in comparison to nano TiO2. Also, the result of the transmission spectrophotometer shows good UV blocking of the viscose\ TiO2\GeO2 composite; however, the blank sample does not have suitable UV blocking, but by doping nano GeO2, its UV blocking property enhances greatly in comparison to viscose\ TiO2. This is because of the UV-blocking property of nano GeO2 and its synergetic UV adsorption. Furthermore, the abrasion resistance and strength of the treated samples improved significantly.
The data used for this study are available on request from the corresponding author.
Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Abrasion resistance of samples
Raw viscose | 3.013 | 2.486 | 82.50 |
Viscose\TiO2 | 2.891 | 2.464 | 85.23 |
Viscose\TiO2\GeO2 | 2.836 | 2.578 | 90.90 |
Apparel Industry in the EU–China Exports and Circular Economy Automatic Identification Of Wrist Position In A Virtual Environment For Garment Design Pressure Evaluation Of Seamless Yoga Leggings Designed With Partition Structure Experimental and Modelling Studies on Thermal Insulation and Sound Absorption Properties of Cross-Laid Nonwoven Fabrics Tensile Properties Analysis Of 3D Flat-Knitted Inlay Fabric Reinforced Composites Using Acoustic Emission Optimization of Sodium Lignosulfonate Treatment on Nylon Fabric Using Box–Behnken Response Surface Design for UV Protection From Raw To Finished Cotton—Characterization By Interface Phenomena A Study on the Woven Construction of Fabric Dyed With Natural Indigo Dye and Finishing for Applying to Product Design for Home Textile Products A Calculation Method for the Deformation Behavior of Warp-Knitted Fabric Nondestructive Test Technology Research for Yarn Linear Density Unevenness Numerical Simulation and Analysis of Airflow in the Condensing Zone of Compact Spinning with Lattice Apron Blend Electrospinning of Poly(Ɛ-Caprolactone) and Poly(Ethylene Glycol-400) Nanofibers Loaded with Ibuprofen as a Potential Drug Delivery System for Wound Dressings Application of Plasticized Cellulose Triacetate Membranes for Recovery and Separation of Cerium(III) and Lanthanum(III) Analysing Service Quality and its Relation to Customer Satisfaction and Loyalty in Sportswear Retail Market Study On Structure And Anti-Uv Properties Of Sericin Cocoons Fit And Pressure Comfort Evaluation On A Virtual Prototype Of A Tight-Fit Cycling Shirt A Fabric-Based Integrated Sensor Glove System Recognizing Hand Gesture Developing Real Avatars for the Apparel Industry and Analysing Fabric Draping in the Virtual Domain Review on Fabrication and Application of Regenerated Bombyx Mori Silk Fibroin MaterialsSimulations of Heat Transfer through Multilayer Protective Clothing Exposed to Flame Determination of Sewing Thread Consumption for 602, 605, and 607 Cover Stitches Using Geometrical and Multi-Linear Regression Models Designing a Three-Dimensional Woven Fabric Structure as an Element of a Baby Stroller Modeling Lean and Six Sigma Integration using Deep Learning: Applied to a Clothing Company Comparative Analysis of Structure and Properties of Stereoscopic Cocoon and Flat Cocoon Effect of Water pH on Domestic Machine Washing Performance of Delicate Textiles Effect of Different Yarn Combinations on Auxetic Properties of Plied Yarns Analysis of Heat Transfer through a Protective Clothing Package Smart Textile for Building and Living Investigation of Twist Waves Distribution along Structurally Nonuniform Yarn 3D Body Scan as Anthropometric Tool for Individualized Prosthetic Socks Preliminary Experimental Investigation of Cut-Resistant Materials: A Biomimetic Perspective Durable Wash-Resistant Antimicrobial Treatment of Knitted Fabrics Study on the Thermal and Impact Resistance Properties of Micro PA66/PU Synergistically Reinforced Multi-Layered Biaxial Weft Knitted Fabric Composites Improvement of Physical Properties of Viscose Using Nano GeO2 as Doping Material Fea-Based Structural Heat Transfer Characteristic of 3-D Orthogonal Woven Composite Subjected to the Non-Uniform Heat Load Bending Failure Behavior of the Glass Fiber Reinforced Composite I-Beams Formed by a Novel Bending Pultrusion Processing Technique Comfort-Related Properies of Cotton Seersucker Fabrics Economical and Social Dimensions of Unionization in Turkish Textile and Clothing Sector Conductive Heat Transfer Prediction of Plain Socks in Wet State A Novel Foam Coating Approach to Produce Abrasive Structures on Textiles Textronic Solutions Used for Premature Babies: A Review Effect of Lycra Weight Percent and Loop Length on Thermo-physiological Properties of Elastic Single Jersey Knitted Fabric Texture Representation and Application of Colored Spun Fabric Using Uniform Three-Structure Descriptor Analysis of Mechanical Behavior of Different Needle Tip Shapes During Puncture of Carbon Fiber Fabric Approach to Performance Rating of Retroreflective Textile Material Considering Production Technology and Reflector Size Influence of Multilayer Interlocked Fabrics Structure on their Thermal Performance Prediction of Standard Time of the Sewing Process using a Support Vector Machine with Particle Swarm Optimization Design Method of Circular Weft-Knitted Jacquard Fabric Based on Jacquard Module Image Analysis as a Method of the Assessment of Yarn for Making Flat Textile Fabrics Investigation of Heat Transfer in Seersucker Woven Fabrics using Thermographic Method Transformable Warning Clothing for Children with Active Light Sources Regenerated Cellulose/Graphene Composite Fibers with Electroconductive Properties High-Performance Workwear for Coal Miners in Northern China: Design and Performance Evaluation Comfort-Related Properties of Double-Layered Woven Car Seat Fabrics Experimental Investigation of the Wettability of Protective Glove Materials: A Biomimetic Perspective An Integrated Lean Six Sigma Approach to Modeling and Simulation: A Case Study from Clothing SME Mechanical Properties of Composites Reinforced with Technical Embroidery Made of Flax Fibers Consumer Adoption of Fast-Fashion, Differences of Perceptions, and the Role of Motivations Across the Adoption Groups A New Consumer Profile Definition Method Based on Fuzzy Technology and Fuzzy AHP Optimal Design of a Novel Magnetic Twisting Device Based on NSGA-II Algorithm Development of the Smart T-Shirt for Monitoring Thermal Status of Athletes Assessment and Semantic Categorization of Fabric Visual Texture Preferences Microscopic Analysis of Activated Sludge in Industrial Textile Wastewater Treatment Plant Application of Coating Mixture Based on Silica Aerogel to Improve Thermal Protective Performance of Fabrics A Biomimetic Approach to Protective Glove Design: Inspirations from Nature and the Structural Limitations of Living Organisms Estimation of Seams in Paraglider Wing Determination of State Variables in Textile Composite with Membrane During Complex Heat and Moisture Transport Numerical Prediction of the Heat Transfer in Air Gap of Different Garment Models Biological Properties of Knitted Fabrics Used in Post-Burn Scar Rehabilitation Fabrication and Characterization of Fibrous Polycaprolactone Blended with Natural Green Tea Extracts Using Dual Solvent Systems Archaeology and Virtual Simulation Restoration of Costumes in the Han Xizai Banquet Painting