1. bookVolume 27 (2020): Issue 2 (June 2020)
Journal Details
License
Format
Journal
eISSN
2084-4549
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Vertical Distribution of Major and Trace Elements in a Soil Profile from the Nile Delta, Egypt

Published Online: 17 Jul 2020
Page range: 281 - 294
Journal Details
License
Format
Journal
eISSN
2084-4549
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The present study was conducted to highlight the elemental composition of ten soil samples collected at different depths along of a soil profile (0.25-17 m). The collected samples were subjected to epithermal neutron activation analysis at the pulsed reactor IBR-2 of Frank Laboratory of Neutron Physics - Joint Institute for Nuclear Research - Dubna - Russian Federation. The concentrations in mg/kg of 36 major and trace elements were determined. Symbatic behaviour of geochemically related elements was observed: Th and U; Cl and Br and Fe, Ti, Ca, Al, and Mg, etc. A sharp increase of certain concentrations at the depth of 8 m was observed. Significant mafic sources of elements were observed and mostly are attributed to Ethiopian High Plateau with small amount of felsic volcanic rocks.

Keywords

[1] Stanley JD. Nile delta: extreme case of sediment entrapment on a delta plain and consequent coastal land loss. Mar Geol. 1996;129(3):189-95. DOI: 10.1016/0025-3227(96)83344-5.10.1016/0025-3227(96)83344-5Search in Google Scholar

[2] Arafa WM, Badawy WM, Fahmi NM, Ali K, Gad MS, Duliu OG, et al. Geochemistry of sediments and surface soils from the Nile Delta and lower Nile valley studied by epithermal neutron activation analysis. J Afr Earth Sci. 2015;107:57-64. DOI: 10.1016/j.jafrearsci.2015.04.004.10.1016/j.jafrearsci.2015.04.004Search in Google Scholar

[3] Stanley J-D. Egypt’s Nile Delta in late 4000 years BP: Altered flood levels and sedimentation, with archaeological implications. J Coast Res. 2019;35(5):1036-50. DOI: 10.2112/JCOASTRES-D-19-00027.1.10.2112/JCOASTRES-D-19-00027.1Search in Google Scholar

[4] Negm A. The Nile Delta. 1 ed. The Handbook of Environmental Chemistry 55. Cham: Springer International Publishing; 2017. ISBN: 9783319561240. DOI: 10.1007/978-3-319-56124-0.10.1007/978-3-319-56124-0Search in Google Scholar

[5] Abd El-Ghani M, Huerta-Martínez FM, Hongyan L, Qureshi R. Human Impacts. In: Abd El-Ghani M, Huerta-Martínez FM, Hongyan L, Qureshi R, editors. Plant Responses to Hyperarid Desert Environments. Cham: Springer International Publishing; 2017. ISBN: 9783319591353. DOI: 10.1007/978-3-319-59135-3_7.10.1007/978-3-319-59135-3_7Search in Google Scholar

[6] Fishar MR. Nile Delta (Egypt). In: Finlayson CM, et al., editor. The Wetland Book: II: Distribution, Description, and Conservation. Dordrecht: Springer; 2018. ISBN: 9789400740013. DOI: 10.1007/978-94-007-4001-3_21610.1007/978-94-007-4001-3_216Search in Google Scholar

[7] Keshta AE, Shaltout KH, Baldwin AH, Sharaf El-Din AA. Sediment clays are trapping heavy metals in urban lakes: An indicator for severe industrial and agricultural influence on coastal wetlands at the Mediterranean coast of Egypt. Mar Pollut Bull. 2020;151:1-6. DOI: 10.1016/j.marpolbul.2019.110816.10.1016/j.marpolbul.2019.110816Search in Google Scholar

[8] Hamza W. The Nile Estuary. In: Wangersky PJ, editor. Estuaries. Berlin, Heidelberg: Springer; 2006. ISBN: 978-3-540-00270-3. DOI: 10.1007/698_5_025.10.1007/698_5_025Search in Google Scholar

[9] Brown K, Lemon J. Fact Sheets Cations and Cation Exchange Capacity. 2016. http://soilquality.org.au/factsheets/cations-and-cec-tas.Search in Google Scholar

[10] Badawy W, Chepurchenko OY, El Samman H, Frontasyeva MV. Assessment of industrial contamination of agricultural soil adjacent to Sadat City, Egypt. Ecol Chem Eng S. 2016;23(2):297-310. DOI: 10.1515/eces-2016-0021.10.1515/eces-2016-0021Search in Google Scholar

[11] Badawy WM, Ali K, El-Samman HM, Frontasyeva MV, Gundorina SF, Duliu OG. Instrumental neutron activation analysis of soil and sediment samples from Siwa Oasis, Egypt. Phys Part Nucl Lett. 2015;12(4):637-44. DOI: 10.1134/s154747711504007x.10.1134/S154747711504007XSearch in Google Scholar

[12] Badawy WM, Ghanim EH, Duliu OG, El Samman H, Frontasyeva MV. Major and trace element distribution in soil and sediments from the Egyptian central Nile Valley. J Afr Earth Sci. 2017;131:53-61. DOI: 10.1016/j.jafrearsci.2017.03.029.10.1016/j.jafrearsci.2017.03.029Search in Google Scholar

[13] Kralj D, Romic D, Romic M, Cukrov N, Mlakar M, et al. Geochemistry of stream sediments within the reclaimed coastal floodplain as indicator of anthropogenic impact (River Neretva, Croatia). J Soils Sed. 2016;16(4):1150-67. DOI: 10.1007/s11368-015-1194-3.10.1007/s11368-015-1194-3Search in Google Scholar

[14] El-Gamal AA. Egyptian Nile Delta Coastal Lagoons: Alteration and Subsequent Restoration. In: Finkl CW, Makowski C, editor. Coastal Wetlands: Alteration and Remediation. Cham: Springer International Publishing; 2017. ISBN: 9783319561790. DOI: 10.1007/978-3-319-56179-0_13.10.1007/978-3-319-56179-0_13Search in Google Scholar

[15] El-Sheekh M. River Nile Pollutants and Their Effect on Life Forms and Water Quality. In HJ Dumont, editor. The Nile: Origin, Environments, Limnology and Human Use. Dordrecht: Springer; 2009. ISBN: 9781402097263. DOI: 10.1007/978-1-4020-9726-3_19.10.1007/978-1-4020-9726-3_19Search in Google Scholar

[16] Frontasyeva MV. Neutron activation analysis in the life sciences. Phys Part Nucl. 2011;42(2):332-78. DOI: 10.1134/S1063779611020043.10.1134/S1063779611020043Search in Google Scholar

[17] Pavlov SS, Dmitriev AY, Frontasyeva MV. Automation system for neutron activation analysis at the reactor IBR-2, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia. J Radioanal Nucl Chem. 2016;309(1):27-38. DOI: 10.1007/s10967-016-4864-8.10.1007/s10967-016-4864-8Search in Google Scholar

[18] Pavlov SS, Dmitriev AY, Chepurchenko IA, Frontasyeva MV. Automation system for measurement of gamma-ray spectra of induced activity for multi-element high volume neutron activation analysis at the reactor IBR-2 of Frank Laboratory of Neutron Physics at the joint institute for nuclear research. Phys Part Nucl Lett. 2014;11(6):737-42. DOI: 10.1134/S1547477114060107.10.1134/S1547477114060107Search in Google Scholar

[19] R Core Team. R: A language and environment for statistical computing. 2016. Vienna, Austria. R Foundation for Statistical Computing. URL: http://www.R-project.org/.Search in Google Scholar

[20] Rudnick RL, Gao S. 4.1 - Composition of the Continental Crust A2 - Holland, Heinrich D. In: Turekian KK, editor. Treatise on Geochemistry. Second Ed. Oxford: Elsevier; 2014. ISBN: 9780080983004. DOI: 10.1016/B978-0-08-095975-7.00301-610.1016/B978-0-08-095975-7.00301-6Search in Google Scholar

[21] Viers J, Dupre B, Gaillardet G. Chemical composition of suspended sediments in world rivers: New insights from a new database. Sci Total Environ. 2009;407(2):853-68. DOI: 10.1016/j.scitotenv.2008.09.053.10.1016/j.scitotenv.2008.09.053Search in Google Scholar

[22] Badawy WM, Duliu OG, Frontasyeva MV, El-Samman H, Mamikhin SV. Dataset of elemental compositions and pollution indices of soil and sediments: Nile River and delta - Egypt. Data in Brief. 2020;28. DOI: 10.1016/j.dib.2019.105009.10.1016/j.dib.2019.105009Search in Google Scholar

[23] Taylor SR, McLennan SM, The continental crust, its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks. Oxford: Blackwell Scientific. 312. 1985. ISBN: 9780632011483.Search in Google Scholar

[24] Condie KC. Chemical-composition and evolution of the upper continental-crust - contrasting results from surface samples and shales. Chem Geol. 1993;104(1-4):1-37. DOI: 10.1016/0009-2541(93)90140-E.10.1016/0009-2541(93)90140-ESearch in Google Scholar

[25] Wedepohl KH. The composition of the continental crust. Geochim Cosmochim Acta. 1995;59(7):1217-32. DOI: 10.1016/0016-7037(95)00038-2.10.1016/0016-7037(95)00038-2Search in Google Scholar

[26] Uosif MAM, Mostafa AMA, Elsaman R, Moustafa E-S. Natural radioactivity levels and radiological hazards indices of chemical fertilizers commonly used in Upper Egypt. J Radiation Res Appl Sci. 2014;7(4):430-7. DOI: 10.1016/j.jrras.2014.07.006.10.1016/j.jrras.2014.07.006Search in Google Scholar

[27] Ahmed NK, El-Arabi A-GM. Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate, Upper Egypt. J Environ Radioact. 2005;84(1):51-64. DOI: 10.1016/j.jenvrad.2005.04.007.10.1016/j.jenvrad.2005.04.007Search in Google Scholar

[28] Karadeniz Ö, Yaprak G. Vertical distributions and gamma dose rates of 40K, 232Th, 238U and 137Cs in the selected forest soils in Izmir, Turkey. Radiat Prot Dosim. 2008;131(3):346-55. DOI: 10.1093/rpd/ncn185.10.1093/rpd/ncn185Search in Google Scholar

[29] Alcalá FJ, Custodio E. Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J Hydrol. 2008;359(1-2):189-207. DOI: 10.1016/j.jhydrol.2008.06.028.10.1016/j.jhydrol.2008.06.028Search in Google Scholar

[30] Davis SN, Whittemore DO, Fabryka-Martin J. Uses of chloride/bromide ratios in studies of potable water. Ground Water. 1998;36(2):338-50. DOI: 10.1111/j.1745-6584.1998.tb01099.x.10.1111/j.1745-6584.1998.tb01099.xSearch in Google Scholar

[31] Saydam Eker Ç, Sipahi F, Gümüş MK, Özkan Ö. Tracing provenance and chemical weathering changes in Ankara Stream sediments, central Turkey: Geochemical and Sr-Nd-Pb-O isotopic evidence. J Afr Earth Sci. 2018;138:367-82. DOI: 10.1016/j.jafrearsci.2017.11.034.10.1016/j.jafrearsci.2017.11.034Search in Google Scholar

[32] Savenko SV. Geochemical aspects of biosedimentation. Dokl AN SSSR. 1986;288:1192-6.Search in Google Scholar

[33] GES. Geology of Ethiopia, Geological Survey of Ethiopia. 2016. http://www.gse.gov.et/.Search in Google Scholar

[34] Gromet LP, Haskin LA, Korotev RL, Dymek RF. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochim Cosmochim Acta. 1984;48(12):2469-82. DOI: 10.1016/0016-7037(84)90298-9.10.1016/0016-7037(84)90298-9Search in Google Scholar

[35] Zhang X, Dalrymple RW, Yang S-Y, Lin C-M, Wang P. Provenance of Holocene sediments in the outer part of the Paleo-Qiantang River estuary, China. Mar Geol. 2015;366:1-15. DOI: 10.1016/j.margeo.2015.04.008.10.1016/j.margeo.2015.04.008Search in Google Scholar

[36] Gu XX, Liu JM, Zheng MH, Tang JX, Qi L. Provenance and tectonic setting of the proterozoic turbidites in Hunan, South China: Geochemical evidence. J Sedimentary Res. 2002;72(3):393-407. DOI: 10.1306/081601720393.10.1306/081601720393Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo