1. bookVolume 27 (2020): Issue 3 (September 2020)
Journal Details
License
Format
Journal
eISSN
2084-4549
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Parameter Sensitivity and Uncertainty of Radiation Interception Models for Intercropping System

Published Online: 14 Oct 2020
Volume & Issue: Volume 27 (2020) - Issue 3 (September 2020)
Page range: 437 - 456
Journal Details
License
Format
Journal
eISSN
2084-4549
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Estimating the interception of radiation is the first and crucial step for the prediction of production for intercropping systems. Determining the relative importance of radiation interception models to the specific outputs could assist in developing suitable model structures, which fit to the theory of light interception and promote model improvements. Assuming an intercropping system with a taller and a shorter crop, a variance-based global sensitivity analysis (EFAST) was applied to three radiation interception models (M1, M2 and M3). The sensitivity indices including main (Si) and total effects (STi) of the fraction of intercepted radiation by the taller (ftaller), the shorter (fshorter) and both intercrops together (fall) were quantified with different perturbations of the geometric arrangement of the crops (10-60 %). We found both ftaller and fshorter in M1 are most sensitive to the leaf area index of the taller crop (LAItaller). In M2, based on the main effects, the leaf area index of the shorter crop (LAIshorter) replaces LAItaller and becomes the most sensitive parameter for fshorter when the perturbations of widths of taller and shorter crops (Wtaller and Wshorter) become 40 % and larger. Furthermore, in M3, ftaller is most sensitive to LAItaller while fshorter is most sensitive to LAIshorter before the perturbations of geometry parameters becoming larger than 50 %. Meanwhile, LAItaller, LAIshorter, and Ktaller are the three most sensitive parameters for fall in all three models. From the results we conclude that M3 is the most plausible radiation interception model among the three models.

Keywords

[1] Mead R, Willey RW. The concept of a ‘Land Equivalent Ratio’ and advantages in yields from intercropping. Experimental Agricult. 2008;16(3):217-28. DOI: 10.1017/S0014479700010978.10.1017/S0014479700010978Search in Google Scholar

[2] Keating BA, Carberry PS. Resource capture and use in intercropping: solar radiation. Field Crops Res. 1993;34(3):273-301. DOI: 10.1016/0378-4290(93)90118-7.10.1016/0378-4290(93)90118-7Search in Google Scholar

[3] Liu X, Rahman T, Song C, Su B, Yang F, Yong T, et al. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Res. 2017;200:38-46. DOI: 10.1016/j.fcr.2016.10.003.10.1016/j.fcr.2016.10.003Search in Google Scholar

[4] Zhang L, van der Werf W, Bastiaans L, Zhang S, Li B, Spiertz JHJ. Light interception and utilization in relay intercrops of wheat and cotton. Field Crops Res. 2008;107(1):29-42. DOI: 10.1016/j.fcr.2007.12.014.10.1016/j.fcr.2007.12.014Search in Google Scholar

[5] Coll L, Cerrudo A, Rizzalli, R, Monzon JP, Andrade FH. Capture and use of water and radiation in summer intercrops in the south-east Pampas of Argentina. Field Crops Res. 2012;134:105-13. DOI: 10.1016/j.fcr.2012.05.005.10.1016/j.fcr.2012.05.005Search in Google Scholar

[6] Zhou Z, Plauborg F, Kristensen K, Andersen MN. Dry matter production, radiation interception and radiation use efficiency of potato in response to temperature and nitrogen application regimes. Agricult Forest Meteorology. 2017;232:595-605. DOI: 10.1016/j.agrformet.2016.10.017.10.1016/j.agrformet.2016.10.017Search in Google Scholar

[7] Kawasaki Y, Tanaka Y, Katsura K, Purcell LC, Shiraiwa T. Yield and dry matter productivity of Japanese and US soybean cultivars. Plant Production Sci. 2016;19(2):257-66. DOI: 10.1080/1343943X.2015.1133235.10.1080/1343943X.2015.1133235Search in Google Scholar

[8] Sieling K, Böttcher U, Kage H. Dry matter partitioning and canopy traits in wheat and barley under varying N supply. Europ J Agron. 2016;74:1-8. DOI: 10.1016/j.eja.2015.11.022.10.1016/j.eja.2015.11.022Search in Google Scholar

[9] Sadras VO, Villalobos FJ, Fereres E. Radiation Interception, Radiation Use Efficiency and Crop Productivity. In: Principles of Agronomy for Sustainable Agriculture. 2016;169-88. DOI: 10.1007/978-3-319-46116-8_13.10.1007/978-3-319-46116-8_13Search in Google Scholar

[10] Haverkort AJ, Bicamumpaka M. Correlation between intercepted radiation and yield of potato crops infested by Phytophthora infestans in Central Africa. Netherlands J Plant Pathol. 1986;92(5):239-47. DOI: 10.1007/bf01977690.10.1007/BF01977690Search in Google Scholar

[11] Gou F, van Ittersum MK, Simon E, Leffelaar PA, van der Putten PEL, Zhang L, et al. Intercropping wheat and maize increases total radiation interception and wheat RUE but lowers maize RUE. Europ J Agron. 2017;84:125-39. DOI: 10.1016/j.eja.2016.10.014.10.1016/j.eja.2016.10.014Search in Google Scholar

[12] Sinoquet H, Bonhomme R. Modeling radiative transfer in mixed and row intercropping systems. Agricult Forest Meteorol. 1992;62(3):219-40. DOI: 10.1016/0168-1923(92)90016-W.10.1016/0168-1923(92)90016-WSearch in Google Scholar

[13] Tsubo M, Walker S. A model of radiation interception and use by a maize-bean intercrop canopy. Agricult Forest Meteorology. 2002;110(3):203-15. DOI: 10.1016/S0168-1923(01)00287-8.10.1016/S0168-1923(01)00287-8Search in Google Scholar

[14] Wang Z, Wu P, Zhao X, Gao Y, Chen X. Water use and crop coefficient of the wheat–maize strip intercropping system for an arid region in northwestern China. Agricult Water Manage. 2015;161:77-85. DOI: 10.1016/j.agwat.2015.07.012.10.1016/j.agwat.2015.07.012Search in Google Scholar

[15] Wang Z, Zhao X, Wu P, He J, Chen X, Gao Y, et al. Radiation interception and utilization by wheat/maize strip intercropping systems. Agricult Forest Meteorology. 2015;204:58-66. DOI: 10.1016/j.agrformet.2015.02.004.10.1016/j.agrformet.2015.02.004Search in Google Scholar

[16] Gijzen H, Goudriaan J. A flexible and explanatory model of light distribution and photosynthesis in row crops. Agricult Forest Meteorology. 1989;48(1):1-20. DOI: 10.1016/0168-1923(89)90004-X.10.1016/0168-1923(89)90004-XSearch in Google Scholar

[17] Varella H, Guérif M, Buis S. Global sensitivity analysis measures the quality of parameter estimation: The case of soil parameters and a crop model. Environ Modelling Software. 2010;25(3):310-9. DOI: 10.1016/j.envsoft.2009.09.012.10.1016/j.envsoft.2009.09.012Search in Google Scholar

[18] Gao L, Bryan BA, Nolan M, Connor JD, Song X, Zhao G. Robust global sensitivity analysis under deep uncertainty via scenario analysis. Environ Modelling Software. 2016;76:154-66. DOI: 10.1016/j.envsoft.2015.11.001.10.1016/j.envsoft.2015.11.001Search in Google Scholar

[19] Iooss B, Lemaître P. A Review on Global Sensitivity Analysis Methods. Uncertainty Management in Simulation-Optimization of Complex Systems. 2015;101-22. DOI: 10.1007/978-1-4899-7547-8_5.10.1007/978-1-4899-7547-8_5Search in Google Scholar

[20] Lei G, Zeng W, Zhu J, Zha Y, Fang Y, Song Y, et al. Quantification of leaf growth, height increase, and compensatory root water uptake of sunflower in heterogeneous saline soils. Agronomy J. 2019;111(3):1-18. DOI: 10.2134/agronj2018.06.0418.10.2134/agronj2018.06.0418Search in Google Scholar

[21] Zeng W, Lei G, Zha Y, Fang Y, Wu J, Huang J. Sensitivity and uncertainty analysis of the HYDRUS-1D model for root water uptake in saline soils. Crop Pasture Sci. 2018;69:163-73. DOI: 10.1071/CP17020.10.1071/CP17020Search in Google Scholar

[22] Zhao G, Bryan BA, Song X. Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters. Ecol Modelling. 2014;279:1-11. DOI: 10.1016/j.ecolmodel.2014.02.003.10.1016/j.ecolmodel.2014.02.003Search in Google Scholar

[23] Brutsaert W. Heat and mass transfer to and from surfaces with dense vegetation or similar permeable roughness. Boundary-Layer Meteorology. 1979;16(4):365-88. DOI: 10.1007/bf02220492.10.1007/BF02220492Search in Google Scholar

[24] Pronk AA, Goudriaan J, Stilma E, Challa H. A simple method to estimate radiation interception by nursery stock conifers: a case study of eastern white cedar. NJAS - Wageningen J Life Sci. 2003;51(3):279-95. DOI: 10.1016/S1573-5214(03)80020-9.10.1016/S1573-5214(03)80020-9Search in Google Scholar

[25] Sobol IM. On sensitivity estimation for nonlinear mathematical models. Keldysh Appl Math Institute. 1990;2(1):112-8. DOI: 10.18287/0134-2452-2015-39-4-459-461.10.18287/0134-2452-2015-39-4-459-461Search in Google Scholar

[26] Wang F, Mladenoff DJ, Forrester JA, Keough C, Parton WJ. Global sensitivity analysis of a modified CENTURY model for simulating impacts of harvesting fine woody biomass for bioenergy. Ecol Modelling. 2013;259:16-23. DOI: 10.1016/j.ecolmodel.2013.03.008.10.1016/j.ecolmodel.2013.03.008Search in Google Scholar

[27] González-Amaro RM, Martínez-Bernal A, Basurto-Peña F, Vibrans H. Crop and non-crop productivity in a traditional maize agroecosystem of the highland of Mexico. J Ethnobiol Ethnomedicine. 2009;5(1):38. DOI: 10.1186/1746-4269-5-38.10.1186/1746-4269-5-38Search in Google Scholar

[28] Shi R, Zhang H, Sun J, Wei G, Zhuang D, Zheng N. Responses of plant biochemical substances to reflectance spectra at leaf and canopy scales. Proc SPIE - Int Soc Optical Eng. 2008;7083. DOI: 10.1117/12.794088.10.1117/12.794088Search in Google Scholar

[29] Sellier JM, Georgieva R, Dimov I. Sensitivity analysis of design parameters for silicon diodes. Numerical Methods Applications. 2014;34-43. DOI: 10.1007/978-3-319-15585-2_410.1007/978-3-319-15585-2_4Search in Google Scholar

[30] Gou F, van Ittersum MK, van der Werf W. Simulating potential growth in a relay-strip intercropping system: Model description, calibration and testing. Field Crops Res. 2017;200:122-42. DOI: 10.1016/j.fcr.2016.09.015.10.1016/j.fcr.2016.09.015Search in Google Scholar

[31] Liu X, Rahman T, Yang F, Song C, Yong T, Liu J, et al. PAR interception and utilization in different maize and soybean intercropping patterns. PLOS ONE 2017;12(1):e0169218. DOI: 10.1371/journal.pone.0169218.10.1371/journal.pone.0169218Search in Google Scholar

[32] Gou F, van Ittersum MK, Wang G, van der Putten PEL, van der Werf W. Yield and yield components of wheat and maize in wheat-maize intercropping in the Netherlands. Europ J Agron. 2016;76:17-27. DOI: 10.1016/j.eja.2016.01.005.10.1016/j.eja.2016.01.005Search in Google Scholar

[33] Wu J, Ding Y, Wang G, Shen Y, Yusuke Y, Jumpei K. Energy balance of irrigated intercropping field in the middle reaches of Heihe River basin. Chin Geograph Sci. 2006;16(3):243-8. DOI: 10.1007/s11769-006-0243-7.10.1007/s11769-006-0243-7Search in Google Scholar

[34] Nassiri Mahallati M, Koocheki A, Mondani F, Feizi H, Amirmoradi S. Determination of optimal strip width in strip intercropping of maize (Zea mays L.) and bean (Phaseolus vulgaris L.) in Northeast Iran. J Cleaner Prod. 2015;106:343-50. DOI: 10.1016/j.jclepro.2014.10.099.10.1016/j.jclepro.2014.10.099Search in Google Scholar

[35] Munz S, Graeff-Hönninger S, Lizaso JI, Chen Q, Claupein W. Modeling light availability for a subordinate crop within a strip-intercropping system. Field Crops Res. 2014;155:77-89. DOI: 10.1016/j.fcr.2013.09.020.10.1016/j.fcr.2013.09.020Search in Google Scholar

[36] Mao L, Zhang L, Evers JB, Henke M, van der Werf W, Liu S, et al. Identification of plant configurations maximizing radiation capture in relay strip cotton using a functional-structural plant model. Field Crops Res. 2016;187:1-11. DOI: 10.1016/j.fcr.2015.12.005.10.1016/j.fcr.2015.12.005Search in Google Scholar

[37] Tang L, Hou C, Huang H, Chen C, Zou J, Lin D. Light interception efficiency analysis based on three-dimensional peach canopy models. Ecol Informatics. 2015;30:60-7. DOI: 10.1016/j.ecoinf.2015.09.012.10.1016/j.ecoinf.2015.09.012Search in Google Scholar

[38] Yang F, Liao D, Wu X, Gao R, Fan Y, Raza MA, et al. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Res. 2017;203:16-23. DOI: 10.1016/j.fcr.2016.12.007.10.1016/j.fcr.2016.12.007Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo