1. bookVolume 28 (2021): Issue 3 (September 2021)
Journal Details
License
Format
Journal
eISSN
2084-4549
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Source Identification and Ecological Risk of Polycyclic Aromatic Hydrocarbons in Soils and Groundwater

Published Online: 11 Oct 2021
Page range: 355 - 363
Journal Details
License
Format
Journal
eISSN
2084-4549
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Polycyclic aromatic hydrocarbons (PAHs) are formed from anthropogenic activities, i.e. industrial emissions, incomplete combustion of petroleum, coal and other fossil fuels and other industrial and domestic activities. Research areas of this study are four representative locations in the industrial complex, in the city of Banja Luka, Republic of Srpska, Bosnia and Herzegovina. The main objective of the paper is to determine the ecological risk and to assess probable sources of PAHs contamination in soil and groundwater. The results of this study reflect the effects of coal combustion (pyrogenic origin), petrogenic and biomass origin and may provide basic data for the remediation of PAHs in the location. The ecological risk in soil (at depths of 30, 100, 200, 300 and 400 cm) and groundwater is determined. The mean values of ecological risk in soil and groundwater decreased with soil depth. Values of RQ(NCs) for groundwater were found at high ecological risk, for Ant, Chr, DahA, Acy, Pyr, BaA, Phe, Flo, Nap, Ace and Fluo, with values 28.57, 20.59, 300.00, 242.86, 185.71, 1700.0, 76.67, 53.33, 15.83, 100.00 and 57.14, respectively. ∑16PAH indicated high ecological risk for most PAHs, which decreased with soil depth. The value of RQ(NCs) for ΣPAHs in groundwater indicates high ecological risk (ΣPAHs ≥ 800 and RQ(MPCs) ≥ 1). This is the first study on the ecological risk of PAHs in soil and groundwater in industrial soils in Banja Luka and provides baseline information for further studies and additional investigations of this industrial complex.

Keywords

[l] Guo J, Chai C, Ge W, Zeng L, Wu J, Xiang D, et al. Accumulation and health risk assessment of PAHs in radish. Pol J Environ Stud. 2018;27(6):2529-39. DOI: 10.15244/pjoes/81087.10.15244/pjoes/81087 Search in Google Scholar

[2] Ding Y, Huang H, Zhang Y, Zheng H, Zeng F, Chen W, et al. Polycyclic aromatic hydrocarbons in agricultural soils from Northwest Fujian, Southeast China: Spatial distribution, source apportionment, and toxicity evaluation. Geochem Explor. 2018;195:121-9. DOI: 10.1016/j.gexplo.2017.12.009.10.1016/j.gexplo.2017.12.009 Search in Google Scholar

[3] Wang D, Ma J, Li H, Zhang X. Concentration and potential ecological risk of PAHs in different layers of soil in the petroleum-contaminated areas of the Loess Plateau, China. Int J Environ Res Public Health. 2018;15(8):1785. DOI: 10.3390/ijerph15081785.10.3390/ijerph15081785612132030127267 Search in Google Scholar

[4] Alsbou E, Zaitoun MA, Alasoufi AM, Al Shra’ah A. Concentration and source assessment of polycyclic aromatic hydrocarbons in the street soil of Ma’an City, Jordan. Arch Environ Contam Toxicol. 2019;77(4):619-30. DOI: 10.1007/s00244-019-00665-2.10.1007/s00244-019-00665-231493017 Search in Google Scholar

[5] Thiombane M, Albanese S, Di Bonito M, Lima A, Zuzolo D, Rolandi R et al. Source patterns and contamination level of polycyclic aromatic hydrocarbons (PAHs) in urban and rural areas of Southern Italian soils. Environ Geochem Health. 2019;41(2):507-28. DOI: 10.1007/s10653-018-0147-3.10.1007/s10653-018-0147-329981015 Search in Google Scholar

[6] Zeng S, Ma J, Ren Y, Liu GJ, Zhang Q, Chen F. Assessing the spatial distribution of soil PAHs and their relationship with anthropogenic activities at a national scale. Int J Environ Res Public Health. 2019;16(24):4928. DOI: 10.3390/ijerph16244928.10.3390/ijerph16244928695036731817465 Search in Google Scholar

[7] Abdel-Shafy HI, Mansour MS. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Petroleum. 2016;25(1):107-23. DOI: 10.1016/j.ejpe.2015.03.011.10.1016/j.ejpe.2015.03.011 Search in Google Scholar

[8] Lamichhane S, Krishna KB, Sarukkalige R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review. Chemosphere. 2016;148:336-53. DOI: 10.1016/j.chemosphere.2016.01.036.10.1016/j.chemosphere.2016.01.03626820781 Search in Google Scholar

[9] Li J, Li F, Liu Q. PAHs behavior in surface water and groundwater of the Yellow River estuary: evidence from isotopes and hydrochemistry. Chemosphere. 2017;178:143-53. DOI: 10.1016/j.chemosphere.2017.03.052.10.1016/j.chemosphere.2017.03.05228324836 Search in Google Scholar

[10] Rodríguez-Escales P, Borràs E, Sarrà M, Folch A. Granulometry and surfactants, key factors in desorption and biodegradation (T. Versicolor) of PAHs in soil and groundwater. Water Air Soil Pollut. 2013;224(2):1422. DOI: 10.1007/s11270-012-1422-z.10.1007/s11270-012-1422-z Search in Google Scholar

[11] Tang L, Tang XY, Zhu YG, Zheng MH, Miao QL. Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environ Int. 2005;31(6):822-8. DOI: 10.1016/j.envint.2005.05.031.10.1016/j.envint.2005.05.03115992927 Search in Google Scholar

[12] Nizzetto L, Lohmann R, Gioia R, Jahnke A, Temme C, Dachs J, et al. PAHs in air and seawater along a North-South Atlantic transect: trends, processes and possible sources. Environ Sci Technol. 2008;42(5):1580-5. DOI: 10.1021/es0717414.10.1021/es071741418441806 Search in Google Scholar

[13] Srogi K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett. 2007;5(4):169-95. DOI: 10.1007/s10311-007-0095-0.10.1007/s10311-007-0095-0561491229033701 Search in Google Scholar

[14] De Nicola F, Alfani A, Maisto G. Polycyclic aromatic hydrocarbon contamination in an urban area assessed by Quercus ilex leaves and soil. Environ Sci Pollut Res Int. 2014;21(12):7616-23. DOI: 10.1007/s11356-014-2665-6.10.1007/s11356-014-2665-624604269 Search in Google Scholar

[15] Lee BK. Sources, distribution and toxicity of polyaromatic hydrocarbons (PAHs) in particulate matter. In: Kumar A, editor. Air Pollution. IntechOpen; 2010. DOI: 10.5772/10045.10.5772/10045 Search in Google Scholar

[16] Ilić P, Nešković Markić D, Stojanović Bjelić L, Farooqi ZUR. Polycyclic aromatic hydrocarbons in different layers of soil and groundwater - evaluation of levels of pollution and sources of contamination. Polish J Environ Stud. 2021;30(2):1-11. DOI: 10.15244/pjoes/125565.10.15244/pjoes/125565 Search in Google Scholar

[17] Ilić P, Nišić T, Ilić S, Stojanović Bjelić L. Identifying new ‘hotspot’ heavy metal contamination in industrial zone soil. Pol J Environ Stud. 2020;29(4):2987-93. DOI: 10.15244/pjoes/113095.10.15244/pjoes/113095 Search in Google Scholar

[18] Ilić P, Nišić T, Farooqi ZUR. Polycyclic aromatic hydrocarbons contamination of soil in an industrial zone and evaluation of pollution sources. Pol J Environ Stud. 2021;30(1):155-62. DOI: 10.15244/pjoes/119095.10.15244/pjoes/119095 Search in Google Scholar

[19] Lammel G, Klánová J, Ilić P, Kohoutek J, Gasić B, Kovacić I, et al. Polycyclic aromatic hydrocarbons in air on small spatial and temporal scales-I. Levels and variabilities. Atmospheric Environ. 2010;44(38):5015-21. DOI: 10.1016/j.atmosenv.2010.07.034.10.1016/j.atmosenv.2010.07.034 Search in Google Scholar

[20] Lammel G, Klánová J, Ilić P, Kohoutek J, Gasić B, Kovacić I, et al. Polycyclic aromatic hydrocarbons in air on small spatial and temporal scales-II. Mass size distributions and gas-particle partitioning. Atmos Environ. 2010;44(38):5022-27. DOI: 10.1016/j.atmosenv.2010.08.001.10.1016/j.atmosenv.2010.08.001 Search in Google Scholar

[21] Rulebook on allowable quantities of dangerous and hazardous matters in soil and irrigation water and methods for their testing (“Official Gazette of the Republic of Srpska”, No. 56/16); 2016. shorturl.at/gGKNS. Search in Google Scholar

[22] Regulation on the classification of waters and categorization of watercourses (“Official Gazette of the Republic of Srpska”, No. 42/01); 2001. shorturl.at/EVXY8. Search in Google Scholar

[23] US-EPA, Method 8270D. Semivolatile Organic Compounds by Gas Chromatography Mass Spectrometry. US Environmental Protection Agency; 2007. Available from: https://19january2017snapshot.epa.gov/hwsw846/sw-846-test-method-8270d-semivolatile-organic-compounds-gas-chromatographymassspectrometry_.html. Search in Google Scholar

[24] Kalf DF, Crommentuijn T, Van de Plassche EJ. Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs). Ecotoxicol Environ Saf. 1997;36(1):89-97. DOI: 10.1006/eesa.1996.1495.10.1006/eesa.1996.1495 Search in Google Scholar

[25] Lan J, Sun Y, Xiang X. Ecological risk assessment of PAHs in a Karst underground river system. Pol J Environ Stud. 2020;29(1):677-87. DOI: 10.15244/pjoes/103447.10.15244/pjoes/103447 Search in Google Scholar

[26] Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S. PAHs in the Fraser river basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem. 2002;33:489-515. DOI: 10.1016/S0146-6380(02)00002-5.10.1016/S0146-6380(02)00002-5 Search in Google Scholar

[27] Iwegbue CM, Tesi GO, Obi G, Obi-Iyeke GE, Igbuku UA, Martincigh BS. Concentrations, health risks and sources of polycyclic aromatic hydrocarbons in Nigerian honey. J Toxicol Environ Health Sci. 2016;8(8):28-42. DOI: 10.1007/s13530-016-0259-z.10.1007/s13530-016-0259-z Search in Google Scholar

[28] Han J, Liang Y, Zhao B, Wang Y, Xing F, Qin L. Polycyclic aromatic hydrocarbon (PAHs) geographical distribution in China and their source, risk assessment analysis. Environ Pollut. 2019;251:312-27. DOI: 10.1016/j.envpol.2019.05.022.10.1016/j.envpol.2019.05.022 Search in Google Scholar

[29] Zhang J, Yang JC, Wang RQ, Hou H, Du XM, Fan SK, et al. Effects of pollution sources and soil properties on distribution of polycyclic aromatic hydrocarbons and risk assessment. Sci Total Environ. 2013;463:1-10. DOI: 10.1016/j.scitotenv.2013.05.066.10.1016/j.scitotenv.2013.05.066 Search in Google Scholar

[30] Parra YJ, Oloyede OO, Pereira GM, De Almeida Lima PHA, Da Silva Caumo SE, Morenikeji OA, et al. Polycyclic aromatic hydrocarbons in soils and sediments in Southwest Nigeria. Environ Pollut. 2020;259: 113732. DOI: 10.1016/j.envpol.2019.113732.10.1016/j.envpol.2019.113732 Search in Google Scholar

[31] Budzinski H, Jones I, Bellocq J, Pierard C, Garrigues P. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem. 1997;58:85-97. DOI: 10.1016/S0304-4203(97)00028-5.10.1016/S0304-4203(97)00028-5 Search in Google Scholar

[32] Sun Y, Zhang S, Lan J, Xie Z, Pu J, Yuan D, et al. Vertical migration from surface soils to groundwater and source appointment of polycyclic aromatic hydrocarbons in epikarst spring systems, Southwest China. Chemosphere. 2019;230:616-27. DOI: 10.1016/j.chemosphere.2019.05.007.10.1016/j.chemosphere.2019.05.00731128508 Search in Google Scholar

[33] Tobiszewski M, Namieśnik J. PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut. 2012;162:110-9. DOI: 10.1016/j.envpol.2011.10.025.10.1016/j.envpol.2011.10.02522243855 Search in Google Scholar

[34] Davis E, Walker TR, Adams M, Willis R, Norris GA, Henry RC. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in small craft harbor (SCH) surficial sediments in Nova Scotia, Canada. Sci Total Environ. 2019;691:528-37. DOI: 10.1016/j.scitotenv.2019.07.114.10.1016/j.scitotenv.2019.07.114819082131325853 Search in Google Scholar

[35] Keshavarzifard M, Zakaria MP, Hwai TS. Bioavailability of polycyclic aromatic hydrocarbons (PAHs) to short-neck clam (Paphia undulata) from sediment matrices in mudflat ecosystem of the west coast of Peninsular Malaysia. Environ Geochem Health. 2017;39(3):591-610. DOI: 10.1007/s10653-016-9835-z.10.1007/s10653-016-9835-z27216263 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo