1. bookVolume 28 (2021): Issue 3 (September 2021)
Journal Details
License
Format
Journal
eISSN
2084-4549
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

The Activation Energies and Optimum Temperatures of Olive Oil Hydrolysis By Lipase Porcine Pancreas

Published Online: 11 Oct 2021
Page range: 389 - 398
Journal Details
License
Format
Journal
eISSN
2084-4549
First Published
08 Nov 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Lipase activity is a perfect indicator for the monitoring of processes of bioremediation of degraded soils. Lipase is also used in the processes of oil hydrolysis in wastewater treatment. To be able to predict and model processes with used lipase in environmental operations, knowledge of the kinetic parameters of the process are required. The paper presents the determined values of activation energies and optimum temperatures for porcine pancreas lipase. The parameters were estimated based on the literature of the activity curves vs. temperature for hydrolysis of olive oil by lipase. It was noticed that concentration of gum arabic added as an emulsifier during lipase activity measurements influences on the obtained values of determined parameters. A mathematical model describing the effect of temperature on porcine pancreas lipase activity was used. Based on the comparison analysis, the optimum temperature Topt were obtained in the range from 313.30 ±0.56 to 319.62 ±0.96 K, activation energies Ea were from 51 ±10 to 82.6 ±9.9 kJ/mol, and values of deactivation energies Ed were in the range from 122.7 ±4.0 to 150.9 ±5.8 kJ/mol.

Keywords

[1] Joniec J, Furczak J, Kwiatkowska E. Application of biological indicators for estimation of remediation of soil degraded by sulphur industry. Ecol Chem Eng S. 2015;22(2):269-83. DOI: 10.1515/eces-2015-0016.10.1515/eces-2015-0016 Search in Google Scholar

[2] Baćmaga M, Kucharski J, Wyszkowska J, Tomkiel M, Borowik A. Response of actinomycetes, phosphatises and urease to soil contamination with herbicides. Ecol Chem Eng S. 2015;22(2):255-67. DOI: 10.1515/eces-2015-0015.10.1515/eces-2015-0015 Search in Google Scholar

[3] Wołejko E, Wydro U, Łoboda T. The ways to increase efficiency of soil bioremediation. Ecol Chem Eng S. 2016;23(1):155-74. DOI: 10.1515/eces-2016-0011.10.1515/eces-2016-0011 Search in Google Scholar

[4] Mendes AA, Oliveira PC, de Castro HF. Properties and biotechnological applications of porcine pancreatic lipase. J Mol Catal B: Enzym. 2012;78:119-34. DOI: 10.1016/j.molcatb.2012.03.004.10.1016/j.molcatb.2012.03.004 Search in Google Scholar

[5] Treichel H, de Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV. A review on microbial lipases production. Food Bioprocess Technol. 2010;3:182-96. DOI: 10.1007/s11947-009-0202-2.10.1007/s11947-009-0202-2 Search in Google Scholar

[6] Barros M, Fleuri LF, Macedo GA. Seed lipases: source, applications and properties - a review. Brazilian J Chem Eng. 2010;27:15-29. DOI: 10.1590/S0104-66322010000100002.10.1590/S0104-66322010000100002 Search in Google Scholar

[7] Jooyandeh H, Kaur A, Minhas KS. Lipases in dairy industry: A review. J Food Sci Technol. 2009;46(3):181-9. Available from: https://www.researchgate.net/publication/267867671_Lipases_in_dairy_industry_A_review. Search in Google Scholar

[8] Sharma R, Chisti Y, Banerjee UC. Production, purification, characterization, and applications of lipases. Biotechnol Adv. 2001;19:627-62. DOI: 10.1016/s0734-9750(01)00086-6.10.1016/S0734-9750(01)00086-6 Search in Google Scholar

[9] Hasan F, Shah AA, Hameed A. Industrial applications of microbial lipases. Enzyme Microb Tech. 2006;39:235-51. DOI: 10.1016/j.enzmictec.2005.10.016.10.1016/j.enzmictec.2005.10.016 Search in Google Scholar

[10] Guerrand D. Lipases industrial applications: focus on food and agroindustries. OCL. 2017;24(4):D403. DOI: 10.1051/ocl/2017031.10.1051/ocl/2017031 Search in Google Scholar

[11] Miłek J. Calculation of temperature optimum as well as activation and deactivation energy for the olive oil hydrolysis with porcine pancreas lipase. Przem Chem. 2020;99(4):585-7. DOI: 10.15199/62.2020.4.14.10.15199/62.2020.4.14 Search in Google Scholar

[12] Bagi K, Simon LM, Szajáni B. Immobilization and characterization of porcine pancreas lipase. Enzyme Microb Tech. 1997;20:531-5. DOI: 10.1016/S0141-0229(96)00190-1.10.1016/S0141-0229(96)00190-1 Search in Google Scholar

[13] Paula AV, Urioste D, Santos JC, de Castro HF. Porcine pancreatic lipase immobilized on polysiloxane-polyvinyl alcohol hybrid matrix: catalytic properties and feasibility to mediate synthesis of surfactants and biodiesel. J Chem Technol Biotechnol. 2007;82:281-8. DOI: 10.1002/jctb.1669.10.1002/jctb.1669 Search in Google Scholar

[14] Lee D-G, Ponvel KM, Kim M, Hwang Sl, Ahn I-S, Lee C-H. Immobilization of lipase on hydrophobic nano-sized magnetite particles. J Mol Catal B: Enzym. 2009;57:62-6. DOI: 10.1371/journal.pone.0114385.10.1371/journal.pone.0114385 Search in Google Scholar

[15] Silva NCA, Miranda JS, Bolina ICA, Silva WC, Hirata DB, de Castro HF, et al. Immobilization of porcine pancreatic lipase on poly-hydroxybutyrate particles for the production of ethyl esters from macaw palm oils and pineapple flavor. Biochem Eng J. 2014;82:139-49. DOI: 10.1016/j.bej.2013.11.015.10.1016/j.bej.2013.11.015 Search in Google Scholar

[16] Guimarăes JR, de Lima Camargo Giordano R, Fernandez-Lafuenteand R, Tardioli PW. Evaluation of strategies to produce highly porous cross-linked aggregates of porcine pancreas lipase with magnetic properties. Molecules. 2018;23:2993. DOI: 10.3390/molecules23112993.10.3390/molecules23112993 Search in Google Scholar

[17] Zaitsev SY, Savina AA, Garnashevich LS, Tsarkova MS, Zaitsev IS. Effect of some charged polymers on the activity of pancreatic porcine lipase. BioNanoScience. 2019;9:773-7. DOI: 10.1007/s12668-019-00677-1.10.1007/s12668-019-00677-1 Search in Google Scholar

[18] Dong H, Li J, Li Y, Hu L, Luo D. Improvement of catalytic activity and stability of lipase by immobilization on organobentonite. Chem Eng J. 2012;181-182:590-6. DOI: 10.1016/j.cej.2011.11.095.10.1016/j.cej.2011.11.095 Search in Google Scholar

[19] Tsujita T, Okuda H. Effect of bile salts on the interfacial inactivation of pancreatic carboxylester lipase. J Lipid Res. 1990;31:831-8. Available from: https://www.jlr.org/content/31/5/831.10.1016/S0022-2275(20)42782-8 Search in Google Scholar

[20] Olusesan AT, Azura LK, Forghani B, Bakar FA, Mohamed AKS, Radu S, et al. Purification, characterization and thermal inactivation kinetics of a non-regioselective thermostable lipase from a genotypically identified extremophilic Bacillus subtilis NS 8. New Biotechnol. 2011;28:738-45. DOI: 10.1016/j.nbt.2011.01.002.10.1016/j.nbt.2011.01.00221238617 Search in Google Scholar

[21] Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuolie N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1-19. DOI: 10.1016/j.tca.2011.03.034.10.1016/j.tca.2011.03.034 Search in Google Scholar

[22] Miłek J. Determination the optimum temperature and activation energies for the hydrolysis of inulin hydrolysis by endo-inulinase Aspergillus niger. Chem Process Eng. 2020;41(2):229-36. DOI: 10.24425/CPE.2020.132545. Search in Google Scholar

[23] Miłek J. Application of the new method to determine of the kinetic parameters of inulin hydrolysis by exo-inulinase Aspergillus niger. J Therm Anal Calorim. 2021. DOI: 10.1007/s10973-020-10495-3.10.1007/s10973-020-10495-3 Search in Google Scholar

[24] Miłek J. The effect of pH on determination of activation energies and the optimum temperatures of hydrolysis of olive oil by lipase from porcine pancreas. Acta Bioeng Biomech. 2021;23(3):1-15. DOI: 10.37190/ABB-01827-2021-02.10.37190/ABB-01827-2021-02 Search in Google Scholar

[25] Kambiré MS, Gnanwa JM, Boa D, Kouadio EJP, Kouamé LP. Modeling of enzymatic activity of free β-glucosidase from palm weevil, Rhynchophorus Palmarum Linn. (Coleoptera: Curculionidae) larvae: effects of pH and temperature. Biophys Chem. 2021;274:106611. DOI: 10.1016/j.bpc.2021.106611.10.1016/j.bpc.2021.106611 Search in Google Scholar

[26] Falco FC, Espersen R, Svensson B, Gernaey KV, LantzAE. An integrated strategy for the effective production of bristle protein hydrolysate by the keratinolytic filamentous bacterium Amycolatopsis keratiniphila D2. Waste Manage. 2019;89:94-102. DOI: 10.1016/j.wasman.2019.03.067.10.1016/j.wasman.2019.03.067 Search in Google Scholar

[27] Soares CMF, Castro HF, Moraes FF, Zanin GM. Characterization and utilization of Candida rugosa lipase immobilized on controlled pore silica. Appl Biochem Biotechnol. 1999;77/79:745-57. DOI: 10.1385/abab:79:1-3:745.10.1385/ABAB:79:1-3:745 Search in Google Scholar

[28] Pereira EB, de Castro HF, de Moraes FF, Zanin GM. Kinetic studies of lipase from Candida rugosa. Appl Biochem Biotechnol. 2001;91-93:739-52. DOI: 10.1385/ABAB:91-93:1-9:739.10.1385/ABAB:91-93:1-9:739 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo