1. bookVolume 40 (2021): Issue 3 (September 2021)
Journal Details
First Published
24 Aug 2013
Publication timeframe
4 times per year
access type Open Access

Spiders (Araneae) as a component of ground-dwelling animal assemblages of the energy crop fields in northern Bukovyna (Ukraine)

Published Online: 22 Oct 2021
Page range: 240 - 247
Received: 01 May 2020
Accepted: 08 Nov 2020
Journal Details
First Published
24 Aug 2013
Publication timeframe
4 times per year

Energy cropping has positive effect only if considering and mitigating potential biodiversity loss in agroecosystems. While investigating ground-dwelling animal assemblages in experimental fields of miscanthus and switchgrass in comparison with a legume-grass mixture and an abandoned field, we found low abundance and taxon diversity of the energy crops assemblages. Spiders comprised 3.3‒3.8% of collected arthropods in the switchgrass and miscanthus and 8.3‒10.1% in the abandoned field and grass mixture. Forty-seven spider species were collected: 14 species in the miscanthus field, 18 in the switchgrass, 23 in the grass mixture and 31 in the abandoned field. Spider diversity was the lowest in the miscanthus, while the number of specimens was minimal in the switchgrass. According to our findings, energy crops hosted poor spider assemblages with no species found exclusively in these habitats. To mitigate the negative impact of biofuel production on biodiversity, we recommend preserving areas of semi-natural vegetation in the agricultural landscape.


Benhadi-Marín, J., Pereira, J.A., Bento, A., Sousa, J.P. & Santos S.A.P. (2016). Biodiversity of spiders in agroecosystems: community structure, conservation and roles as biological control agents. In S.A.P. Santos (Ed.), Natural enemies: Identification, protection strategies and ecological im pacts (pp. 43–110). Hauppauge: Nova Science Publishers. Search in Google Scholar

Blaum, N., Seymour, C., Rossmanith, E., Schwager, M. & Jeltsch F. (2009). Changes in arthropod diversity along a land use driven gradient of shrub cover in savanna rangelands: identification of suitable indicators. Biodiv ers. Conserv., 18(5), 1187–1199. DOI: 10.1007/s10531-008-9498-x.10.1007/s10531-008-9498-x Search in Google Scholar

Cole, L.J., McCracken, D.I., Downie, I.S., Dennis, P., Foster, G.N., Waterhouse, A., Murphy, K.J., Griffin, A.L. & Kennedy M.P. (2005). Comparing the effects of farming practices on ground beetle (Coleoptera: Carabidae) and spider (Araneae) assemblages of Scottish farmland. Biodivers. Conserv., 14(2), 441–460. DOI: 10.1007/s10531-004-6404-z.10.1007/s10531-004-6404-z Search in Google Scholar

Cook, J.H., Beyea, J. & Keeler K.H. (1991). Potential impacts of biomass production in the United States on biological diversity. Annual Review of Energy and the Environment, 16, 401‒431. DOI: 10.1146/annurev. eg.16.110191.002153. Search in Google Scholar

Dauber, J., Cass, S., Gabriel, D., Harte, K., Åström, S., O’Rourke, E. & Stout J.С. (2015). Yield-biodiversity trade-off in patchy fields of Miscanthus × giganteus. Global Change Biology Bioenergy, 7, 455–467. DOI: 10.1111/ gcbb.12167.10.1111/gcbb.12167 Search in Google Scholar

Dauber, J., Jones, M.B., & Stout J.C. (2010). The impact of biomass crop cultivation on temperate biodiversity. Global Change Biology Bioenergy, 2(6), 289–309. DOI: 10.1111/j.1757-1707.2010.01058.x.10.1111/j.1757-1707.2010.01058.x Search in Google Scholar

Eggers, J., Tröltzsch, K., Falcucci, A., Maiorano, L., Verburg, P.H., Framstad, E., Louette, G., Maes, D., Nagy, Sz., Ozinga, W. & Delbaere B. (2009). Is biofuel policy harming biodiversity in Europe? Global Change Biology Bioenergy, 1(1), 18‒34. DOI: 10.1111/j.1757-1707.2009.01002.x.10.1111/j.1757-1707.2009.01002.x Search in Google Scholar

Energy Strategy of Ukraine until 2035 (2017). Security, energy efficiency, com petitiveness. The order of Cabinet of Ministers dated. https://www.kmu.gov.ua/en/news/250210653 Search in Google Scholar

Groom, M.J., Gray, E.M. & Townsend P.A. (2008). Biofuels and biodiversity: principles for creating better policies for biofuel production. Conserv. Biol., 22(3), 602‒609. DOI: 10.1111/j.1523-1739.2007.00879.x.10.1111/j.1523-1739.2007.00879.x Search in Google Scholar

Hammer, Ø., Harper, D.A.T. & Ryan P.D. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontology Electronic, 4(1), 1−9. https://palaeo-electronica.org/2001_1/past/past.pdf Search in Google Scholar

Holguin, C.M., Reay-Jones, F.P.F., Frederick, J.R., Adler, P.H., Chong, J.H. & Savereno A. (2010). Insect diversity in switchgrass grown for bio-fuel in South Carolina. J. Agric. Urban Entomol., 27(1), 1‒19. DOI: 10.3954/1523-5475- Search in Google Scholar

Jodl, S., Eppel-Hotz, A. & Kuhn W. (2004). Miscanthus als nachwachsender Rohstoff. Veitshöchheimer Berichte, 77, 1–34. Search in Google Scholar

Jost, L., Chao, A. & Chazdon R.L. (2011). Compositional similarity and β (beta) diversity. In A.E. Magurran & B.J. Mc Gill (Eds.), Biological di versity: frontiers in measurement and assessment ( pp. 66–84). Oxford: Oxford University Press. Search in Google Scholar

Lewandowski, I., Scurlock, J.M., Lindvall, E. & Christou M. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy, 25(4), 335‒361. DOI: 10.1016/S0961-9534(03)00030-8.10.1016/S0961-9534(03)00030-8 Search in Google Scholar

Magurran, A. (1991). Ecological diversity and its measurements. London: Chapman and Hall. Search in Google Scholar

Maloney, D., Drummond, F.A. & Alford R. (2003). Spider predation in agroecosystems: can spiders effectively control pest population? MAFES Technical Bulletin, 190, 1‒32. Search in Google Scholar

Michalko, R., Pekar, S. & Entling M.H. (2019). An updated perspective on spiders as generalist predators in biological control. Oecologia, 189(1), 21‒36. DOI: 10.1007/s00442-018-4313-1.10.1007/s00442-018-4313-1 Search in Google Scholar

National Atlas of Ukraine (2007). Kyiv. Search in Google Scholar

Öberg, S., Mayr, S. & Dauber J. (2008). Landscape effects on recolonisation patterns of spiders in arable fields. Agric. Ecosyst. Environ., 123(1‒3), 211‒218. DOI: 10.1016/j.agee.2007. Search in Google Scholar

Pesenko, Y.A. (1982). Principles and methods of quantitative analysis in faunistic researches (in Russian). Moscow: Nauka. Search in Google Scholar

Platen, R., Konrad, J. & Glemnitz M. (2017). Novel energy crops: an opportunity to enhance the biodiversity of arthropod assemblages in biomass feedstock cultures? International Journal of Biodiver sity Science, Ecosystem Services & Management, 13(1), 162‒171. DOI: 10.1080/21513732.2017.1289244.10.1080/21513732.2017.1289244 Search in Google Scholar

Polchaninova, N., Savchenko, G., Ronkin, V., Drogvalenko, A. & Putchkov A. (2019). Summer fire in steppe habitats: a long-term effect on vegetation and autumnal assemblages of cursorial arthropods. Hacquetia, 18(2), 213‒231. DOI: 10.2478/hacq-2019-0006.10.2478/hacq-2019-0006 Search in Google Scholar

Polchaninova N., Tsurikov, M. & Atemasov A. (2016). Effect of summer fire on cursorial spider (Aranei) and beetle (Coleoptera) assemblages in meadow steppes of Central European Russia. Hacquetia, 15(2), 113–132. DOI: 10.1515/hacq-2016-0019.10.1515/hacq-2016-0019 Search in Google Scholar

Prokopenko, E.V. & Savchenko E.Y. (2013). Spiders (Aranei) of agrocoenoses of the Donetsk Region (in Russian). Probl. Ekol. i Okhrany Prirody Tekh nogennogo Reg. Mezhvedomstv. sb. Nauchn. Rabot., 1, 122–133. Search in Google Scholar

Sabluk, V.T., Gryshchenko, O.M., Smirnykh, V.M., Pedos, V.P. & Suslyk L.O. (2018). Do pests impose a danger to bioenergy crops? (in Ukrainian). Bioenergy, 1, 37‒40. Search in Google Scholar

Schaeffer, S., Baxendale, F., Heng-Moss, T., Sitz, R., Sarath, G., Mitchell, R. & Shearman R. (2011). Characterization of the Arthropod Community Associated with Switchgrass (Poales: Poaceae) in Nebraska. J. Kans. En tomol. Soc., 84(2), 87‒104. DOI: 10.2317/JKES100329.1.10.2317/JKES100329.1 Search in Google Scholar

Semere, T. & Slate F.M. (2007) Ground flora, small mammal and bird species diversity in miscanthus (Miscanthus × giganteus) and reed canary-grass (Phalaris arundinacea) fields. Biomass Bioenergy, 31, 20‒29. DOI: 10.1016/j.biombioe.2006. Search in Google Scholar

Seyfulina, R.R. (2005). Epigeic spiders (Arachnida, Aranei) in agroecosystems of Moscow region (species composition, spatial distribution, and seasonal dynamics) (in Russian). Russian Journal of Zoology, 84(3), 330‒346. Search in Google Scholar

Seyfulina, R.R. (2010). The spider assemblage (Arachnida, Aranei) in agroeco-systems of the Kuban Plain: Species composition, spatial distribution, and seasonal dynamics (in Russian). Russian Journal of Zoology, 89(2), 151‒166. Search in Google Scholar

Snelick, T.L. (2018). Arthropod Abundance and Diversity in Miscanthus x giganteus, Panicum virgatum, and Other Habitat Types in Southeastern Ohio. Doctoral dissertation, Ohio University. Search in Google Scholar

Stefanovska, Ò.R., Lewis, E.E., Likar, Ya.O., Rakhmetov, D.B. & Pidlisnyuk V.V. (2011). Herbivorous pests of Miscanthus giganteus. Studying of its potential impact to agrocenosis for second generation biofuel production (in Ukrainian). Karantin i Zahist Roslin, 5, 6‒8. Search in Google Scholar

Stefanovska, T.R., Kucherovs’ka, S.V. & Pidlisniuk V.V. (2012). Agro-ecological risk assessment of cultivation of swissgrass considering the impact of harmful organisms (in Ukrainian). Agroecological Journal, 3, 125‒127. Search in Google Scholar

Stöcker, G. & Bergmann A. (1977). Ein Modell der Dominanzstruktur und seine nwendung. Archiv für Naturschutz und Landschaftforschung, 17, 1–26. Search in Google Scholar

Webb, A. & Coates D. (2012). Biofuels and biodiversity. Montreal: Secretariat of the Convention on Biological Diversity. Search in Google Scholar

Williams, M.A. & Feest A. (2019). The effect of Miscanthus cultivation on the biodiversity of ground beetles (Coleoptera: Carabidae), spiders and harvestmen (Arachnida: Araneae and Opiliones). Agric. Sci., 10, 903‒917. DOI: 10.4236/as.2019.107069.10.4236/as.2019.107069 Search in Google Scholar

WWF Living Planet Report (2016). Risk and resilience in a new era. http://awsassets.panda.org/downloads/lpr_living_planet_report_2016.pdf Search in Google Scholar

Zhukov, O., Kunah, O.M., Dubinina, Y. & Novikova V. (2018). The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrage. Ekológia (Bratislava), 37(4), 301–327. DOI: 10.2478/eko-2018-0023.10.2478/eko-2018-0023 Search in Google Scholar

Zhuravel, M.Y., Lezhenina, I.P., Polchaninova, N.Y. & Yaremenko V.V. (2012). The use of ground-dwelling arthropods for the monitoring of soil reclamation in oil and gas fields (in Ukrainian). The Kharkov Entomological Society Gazette, 20(4), 5–14. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo