1. bookVolume 40 (2021): Issue 3 (September 2021)
Journal Details
First Published
24 Aug 2013
Publication timeframe
4 times per year
access type Open Access

Does Seabird Colony Size Determine The Physiochemical Properties Of Island Soils?

Published Online: 22 Oct 2021
Page range: 267 - 275
Received: 09 Mar 2021
Accepted: 11 Jun 2021
Journal Details
First Published
24 Aug 2013
Publication timeframe
4 times per year

Many species of gulls have expanded their range worldwide and massively occupied coastal islands. These colonisations have not only affected the biotic interactions among seabird colonies, but also altered the soil chemistry through excrement accumulation. To test whether the seabird colony size determines nutrient levels of island soil, we carried out a field study during a breeding season on six Mediterranean islands in central North Algeria which harbour different population sizes of the yellow-legged gull (Larus michahellis). We sampled the soil and measured a suite of physical (area, floral richness, clay, fine silt, large silt, fine sand and large sand content) and chemical (pH, electric conductivity, limestone, organic matter, N, P, Ca, Mg, K and Na) properties and the colony size and density of the yellow-legged gull. Using principal component analysis, we found that the six islands showed some physicochemical similarities, but island area, colony size and soil N and P levels structured the islands into different groups. Although there was evidence of a positive relationship between colony size and N and P soil levels, this relationship was not linear. Our results suggest that historical rather than punctual data on the colony size of seabirds might give more robust predictions of soil physicochemistry of islands.


Aubert, G. (1978). Méthodes d analyse des sols. Marseille: C.R.D.P. Search in Google Scholar

Baaloudj, A., Samraoui, F., Alfarhan, A.H. & Samraoui B. (2014). Phenology, nest-site selection and breeding success of a North African colony of the yellow-legged gull, Larus michahellis. Afr. Zool., 49(2), 213−221. DOI: 10.1080/15627020.2014.11407637.10.1080/15627020.2014.11407637 Search in Google Scholar

Baaloudj, A., Samraoui, F., Laouar, A., Benoughidene, M., Hasni, D., Bouchahdane, I., Khaled, H., Bensouilah, S., Alfarhan, A.H. & Samraoui B. (2012). Dispersal of yellow-legged gulls Larus michahellis ringed in Algeria: a preliminary analysis. Ardeola, 59(1), 137−144. DOI: 10.13157/ arla.59.1.2012.137. Search in Google Scholar

Barton, K. ( 2019). Package ‘MuMIn. R package version 14315. https://CRANR-projectorg/package=MuMIn. Search in Google Scholar

Benhamiche-Hanifi, S. & Moulaï R. ( 2012). Analyse des phytocénoses des systèmes insulaires des régions de Béjaia et de Jijel (Algérie) en présence du Goéland leucophée (Larus michahellis). Revue d,Écologie, 67(4), 375−397. http://hdl.handle.net/2042/55930. Search in Google Scholar

BirdLife International (2015). European Red List of Birds. Luxembourg: Office for Official Publications of the European Communities. Search in Google Scholar

Blokpoel, H. & Scharf W.C. (1991). Introductory remarks: superabundance in gulls: causes, problems and solutions. In B.P. Bell, R.O. Cossee, J.E.C. Flux, B.D. Heather, R.A. Hitchmough, C.J.R. Robertson & M.J. Williams (Eds.), Acta 20 congressus internationalis ornithologici (pp. 2372−2377). Wellington: New Zealand Ornithological Congress Trust Board. Search in Google Scholar

Blokpoel, H. & Struger J. (1988). Cherry depredation by ring-billed Gulls, Larus delawarensis, in the Niagara Peninsula, Ontario. Can. Field Nat., 102(3), 430−433. Search in Google Scholar

Borg, J., Sultana, J. & Cachia-Zammit R. (1992‒1994). Predation by the yellow-legged gull Larus cachinnans on storm petrels Hydrobates pelagicus on Filfla. Il Merill, 28, 19−21. Search in Google Scholar

Bosch, M. & Sol D. (1998). Habitat selection and breeding success in Yellow-legged Gulls Larus cachinnans. Ibis, 140(3), 415−421. DOI: 10.1111/j.1474-919X.1998.tb04602.x.10.1111/j.1474-919X.1998.tb04602.x Search in Google Scholar

Bosman, A.L. & Hockey P.A.R. (1986). Seabird guano as a determinant of rocky intertidal community structure. Mar. Ecol. Prog. Ser., 32, 247−257. https://www.jstor.org/stable/2482498410.3354/meps032247 Search in Google Scholar

Bougaham, A.F. & Moulaï R. (2013). Aspects démographique et chronologie d’installation des nids du Goéland leucophée, (Larus michahellis) dans la région de Jijel (Algérie). Lebanese Science Journal, 14(2), 3−13. Search in Google Scholar

Burger, J. & Shisler J. (1978). Nest site selection and competitive interactions of Herring and Laughing Gulls in New Jersey. The Auk, 95(2), 252−266. DOI: 10.1093/auk/95.2.252. Search in Google Scholar

Fasola, M. & Canova L. (1992). Nest habitat selection by eight syntopic species of Mediterranean gulls and terns. Colonial Waterbirds, 15, 169−178. DOI: 10.2307/1521450.10.2307/1521450 Search in Google Scholar

Hafidi, M., Badri, W., Kaemmerer, M. & Revel J. (1994). Comparaison des méthodes d’extraction chimique et biologique pour la détermination du phosphore assimilable. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 14(3), 43−48. Search in Google Scholar

Hogg, E. & Morton J. (1983). The effects of nesting gulls on the vegetation and soil of islands in the Great Lakes. Can. J. Bot., 61(12), 3240−3254. DOI: 10.1139/b83-361.10.1139/b83-361 Search in Google Scholar

Hussein, A. A., Baaloudj, A., Benhamiche-Hanifi, S., Lassouane, N., & Moulai R. (2021). Does seabird guano affect plant physiology in insular ecosystem? Studia Universitatis Vasile Goldis Arad, Seria Stiintele Vietii, 31(1), 11-22. Search in Google Scholar

Hutchinson, G. E. (1950). Survey of contemporary knowledge of biogeochemistry 3. The biogeochemistry of vertebrate excretion. Bulle tin of the American Museum of Natural History, 96. http://hdl.handle.net/2246/918. Search in Google Scholar

Jacob, J. & Courbet B. (1980). Oiseaux de mer nicheurs sur la côte en Algérie. Le Gerfaut, 70, 385−401. Search in Google Scholar

Kassambara, A. & Mundt F. (2017). Package ‘factoextra. Extract and visualize the results of multivariate data analyses R package version 105. https://CRANR-projectorg/package=factoextra. Search in Google Scholar

Keitt, B.S., Tershy, B.R. & Croll D.A. ( 2004). Nocturnal behavior reduces predation pressure on Black-vented Shearwaters Puffinus opisthomelas. Mar. Ornithol., 32, 173−178. Search in Google Scholar

Kohn, D. & Walsh D. (1994). Plant species richness‒the effect of island size and habitat diversity. J. Ecol., 82, 367−377. DOI: 10.2307/2261304.10.2307/2261304 Search in Google Scholar

Maron, J.L., Estes, J.A., Croll, D.A., Danner, E.M., Elmendorf, S.C. & Buck-elew S.L. (2006). An introduced predator alters Aleutian Island plant communities by thwarting nutrient subsidies. Ecol. Monogr., 76(1), 3−24. DOI: 10.1890/05-0496.10.1890/05-0496 Search in Google Scholar

Mathieu, C., Pieltain, F. & Jeanroy E. ( 2003). Analyse chimique des sols: Méth odes choisies. London, Paris, New York: Tec & Doc. Lavoisier. Search in Google Scholar

Matias, R. & Catry P. (2010). The diet of Atlantic Yellow-legged Gulls (Larus michahellis atlantis) at an oceanic seabird colony: estimating predatory impact upon breeding petrels. European Journal of Wildlife Research, 56(6), 861−869. DOI: 10.1007/s10344-010-0384-y.10.1007/s10344-010-0384-y Search in Google Scholar

McColl, J. & Burger J. (1976). Chemical inputs by a colony of Franklin’s gulls nesting in cattails. Am. Midl. Nat., 96, 270−280. DOI: 10.2307/242406810.2307/2424068 Search in Google Scholar

Monaghan, P., Shedden, C., Ensor, K., Fricker, C. & Girdwood R. (1985). Salmonella carriage by herring gulls in the Clyde area of Scotland in relation to their feeding ecology. J. Appl. Ecol., 22, 669−679. DOI: 10.2307/2403220.10.2307/2403220 Search in Google Scholar

Moulaï, R. (2007). Fluctuation saisonnière des oiseaux de la décharge publique de la ville de Béjaia (Algérie), cas particulier du goéland leucophée (Larus michahellis). Ostrich Journal of African Ornithology, 78(2), 527−531.10.2989/OSTRICH.2007. Search in Google Scholar

Moulaï, R., Sadoul, N. & Doumandji S. (2006). Effectifs et biologie de la reproduction du Goéland leucophée Larus michahellis dans la région de Béjaia (Algérie). Alauda, 74(2), 225−234. Search in Google Scholar

Mulder, C.P., Anderson,W.B., Towns, D.R. & Bellingham P.J. (2011). Seabird islands: ecology, invasion, and restoration. Oxford: Oxford University Press.10.1093/acprof:osobl/9780199735693.001.0001 Search in Google Scholar

Nilsson, S.G., Bengtsson, J. & As S. (1988). Habitat diversity or area per se? Species richness of woody plants, carabid beetles and land snails on islands. J. Anim. Ecol., 57, 685−704. DOI: 10.2307/4933.10.2307/4933 Search in Google Scholar

Oro, D., de León, A., Minguez, E. & Furness R.W. (2005). Estimating predation on breeding European storm-petrels (Hydrobates pelagicus) by yellow-legged gulls (Larus michahellis). J. Zool., 265(4), 421−429. DOI: 10.1017/S0952836905006515.10.1017/S0952836905006515 Search in Google Scholar

Otero, X., Tejada, O., Martín-Pastor, M., De La Peña, S., Ferreira, T. & Pérez-Alberti A. (2015). Phosphorus in seagull colonies and the effect on the habitats. The case of yellow-legged gulls (Larus michahellis) in the Atlantic Islands National Park (Galicia-NW Spain). Sci. Total Environ., 532, 383−397. DOI: 10.1016/j.scitotenv.2015. Search in Google Scholar

Pérez, X.O. (1998). Effects of nesting yellow-legged gulls (Larus cachinnans Pallas) on the heavy metal content of soils in the Cies Islands (Galicia, North-west Spain). Mar. Pollut. Bull., 36(4), 267−272. DOI: 10.1016/ S0025-326X(98)80010-6. Search in Google Scholar

Pétard, J. (1993). Les méthodes d analyse: tome 1. Analyse de sols. Nouméa: France: Institut Français de Recherche Scientifique pour le Développement. Search in Google Scholar

R Development Core Team (2020). R: A Language and Environment for Statis tical Computing. Vienna: R Foundation for Statistical Computing. Search in Google Scholar

Raven, S.J. & Coulson J.C. (1997). The distribution and abundance of La rus gulls nesting on buildings in Britain and Ireland. Bird Study, 44(1), 13−34. DOI: 10.1080/00063659709461035.10.1080/00063659709461035 Search in Google Scholar

Rgeas, J., Vidal, É. & Ponel P. (2003). Colonial seabirds change beetle assemblages on a Mediterranean island. Ecoscience, 10(1), 38−44. DOI: 10.1080/11956860.2003.11682748.10.1080/11956860.2003.11682748 Search in Google Scholar

Sánchez-Piñero, F. & Polis GA. (2000). Bottom-up dynamics of allochthonous input: direct and indirect effects of seabirds on islands. Ecology, 81(11), 3117−3132. DOI: 10.1890/0012-9658(2000)081[3117:BUDOAI ]2.0.CO;2. Search in Google Scholar

Swennen, C. (1989). Gull predation upon eider Somateria mollissima ducklings: destruction or elimination of the unfit. Ardea, 77, 21−46. Search in Google Scholar

Thomas, G.W. (1996). Soil pH and soil acidity. In D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston & M. E. Sumner (Eds.), Methods of soil analysis (pp. 475−490). American Society of Agronomy. DOI: 10.2136/sssabookser5.3.c16.10.2136/sssabookser5.3.c16 Search in Google Scholar

Vidal, E., Medail, F. & Tatoni T. (1998a). Is the yellow-legged gull a superabundantbird species in the Mediterranean? Impacton fauna and flora, conservation measuresand research priorities. Biodivers. Conserv., 7(8), 1013−1026. DOI: 10.1023/A:100880503057810.1023/A:1008805030578 Search in Google Scholar

Vidal, E., Médail, F., Tatoni, T., Roche, P. & Vidal P. (1998b). Impact of gull colonies on the flora of the Riou archipelago (Mediterranean islands of south-east France). Biol. Conserv., 84(3), 235−243. DOI: 10.1016/S0006-3207(97)00130-4.10.1016/S0006-3207(97)00130-4 Search in Google Scholar

Walkley, A. & Black I.A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci., 37(1), 29−38.10.1097/00010694-193401000-00003 Search in Google Scholar

Wootton, J.T. (1991). Direct and indirect effects of nutrients on intertidal community structure: variable consequences of seabird guano. J. Exp. Mar. Biol. Ecol., 151(2), 139−153. DOI: 10.1016/0022-0981(91)90121-C.10.1016/0022-0981(91)90121-C Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo