1. bookVolume 40 (2021): Issue 4 (December 2021)
Journal Details
License
Format
Journal
eISSN
1337-947X
First Published
24 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Salt and Drought Effect on Germination and Initial Growth of Lavandula stoechas: A Potential Candidate for Rehabilitation of the Mediterranean Disturbed Coastal Lands

Published Online: 23 Dec 2021
Page range: 301 - 311
Received: 12 Apr 2021
Accepted: 08 Jul 2021
Journal Details
License
Format
Journal
eISSN
1337-947X
First Published
24 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Information relating to germination and seedling emergence of a plant aids in determining the species spatiotemporal distribution and also facilitates in designing appropriate plant management strategies within an ecosystem. Lavandula stoechas L. (Lamiaceae), a naturally occurring shrub, is particularly used in pharmaceutical and cosmetic industries. This species, indeed, has the potential for rehabilitation of degraded costal lands. However, various aspects of its seed biology have not yet been recognised. Here, we aimed to assess the effects of different soluble salts (NaCl, CaCl2, MgCl2 and Na2SO4) and drought (as simulated by polyethylene glycol, [PEG]6000) on seed germination patterns and early seedling growth responses. Seeds treated with five iso-concentration (0–100 mM) salinities and five PEG6000 (0 to −1 MPa) levels were incubated in a controlled germinator set at 20°C. The preliminary results revealed that seeds of L. stoechas lacked primary/innate dormancy and they germinated abundantly (89.2% germination) and fast (7.4% day−1) in the absence of stress. Regardless of the kind of salt applied, the germination percentage (GP) and germination rate index (GRI) fell significantly with increasing salinity, and germination ceased completely at 100 mM Na2SO4. In fact, the salinity tolerance index (STI) showed that, among all salts tested, Na2SO4 appeared to have more inhibitory action on germination. In addition, L. stoechas was found to be tolerant to moderate salty stress (<50 mM) in early growth phase. The salt solution parameters (i.e. concentration, electrical conductivity [EC] and salt content) were best correlated with seed/seedling metrics. pH was not a good predictor for salt effects at the germination/seedling stages. Overall, this species seems to be sensitive to drought at the germination and initial growth phases. The germination recovery potential of L. stoechas in both stresses stipulates that this species can be regarded as a promising candidate in the rehabilitation of Mediterranean disturbed coastal habitats.

Keywords

Abbad, A., Belaqziz, R., Bekkouche, K. & Markou M. (2011). Influence of temperature and water potential on laboratory germination of two Moroccan endemic thymes: Thymus maroccanus Ball. and Thymus broussonetii Boiss. African Journal of Agricultural Research, 6, 4740–4745. DOI: 10.5897/AJAR10.574. Search in Google Scholar

Alexakis, D., Gotsis, D. & Giakoumakis S. (2015). Evaluation of soil salinization in a Mediterranean site (Agoulinitsa district—West Greece). Arabian Journal of Geosciences, 8, 1373–1383. DOI: 10.1007/s12517-014-1279-0.10.1007/s12517-014-1279-0 Search in Google Scholar

Alfarrah, N. & Walraevens K. (2018). Groundwater Overexploitation and Seawater Intrusion in Coastal Areas of Arid and Semi-Arid Regions. Water, 10(2), 143. DOI: 10.3390/w10020143.10.3390/w10020143 Search in Google Scholar

Ali. H.H., Naeem, M., Ali, H.H., Tanveer, A., Javaid, M.M., Peerzada, A.M. & Chauhan B.S. (2017). Effect of environmental factors on germination of Salsola foetida: potential species for rehabilitation of degraded rangelands. Rangeland Ecology & Management, 70(5), 638–643. DOI: 10.1016/j.rama.2017.02.003.10.1016/j.rama.2017.02.003 Search in Google Scholar

Aljasmi, M., El-Keblawy, A. & Mosa K.A. (2021) Abiotic factors controlling germination of the multipurpose invasive Prosopis pallida: towards aforestation of salt-afected lands in the subtropical arid Arabian desert. Trop. Ecol., 62, 116–125. DOI: 10.1007/s42965-020-00124-3.10.1007/s42965-020-00124-3 Search in Google Scholar

Al-Khateeb, W.M., Muhaidat, R.M., Odat, N., Sawaie, A., Lahham, J.N. & Al-Oqlah A. (2010). Interactive effects of salinity, light and temperature on seed germination of Zygophyllum simplex L. (Zygophyllaceae). International Journal of Integrative Biology, 10(1), 9–13. Search in Google Scholar

Basto, S., Dorca-Fornell, C., Thompson, K. & Rees M. (2013). Effect of pH buffer solutions on seed germination of Hypericum pulchrum, Campanula rotundifolia and Scabiosa columbaria. Seed Sci. Technol., 41(2), 298–302. DOI: 10.15258/sst.2013.41.2.12.10.15258/sst.2013.41.2.12 Search in Google Scholar

Belgacem, A.O., Salem, H.B., Bouaicha, A. & El-Mourid M. (2008). Communal rangeland rest in arid area, a tool for facing animal feed costs and drought mitigation: the case of Chenini Community, Southern Tunisia. J. Biol. Sci., 8, 822–825. DOI: 10.3923/jbs.2008.822.825.10.3923/jbs.2008.822.825 Search in Google Scholar

Benabdelkader, T., Zitouni, A., Guitton, Y., Jullien, F., Maitre, D., Casabianca, H., Legendre, L. & Kameli A. (2011). Essential oils from wild populations of Algerian Lavandula stoechas L.: composition, chemical variability, and in vitro biological properties. Chemistry & Biodiversity, 8(5), 937–953. DOI: 10.1002/cbdv.201000301.10.1002/cbdv.201000301 Search in Google Scholar

Bina, F. & Bostani A. (2017). Effect of salinity (NaCl) stress on germination and early seedling growth of three medicinal plant species. Advancements in Life Sciences, 4 (3), 77–83. Search in Google Scholar

Boukhatem, M.N., Ferhat, M.A. & Kameli A. (2020). Butterfly lavender (Lavandula stoechas L.): an aromatic plant with several medicinal properties. Phytothérapie, 18(1), 30–44. DOI: 10.3166/phyto-2019-0163.10.3166/phyto-2019-0163 Search in Google Scholar

Catav, Ş.S., Bekar, İ., Ateş, B.S., Ergan, G., Oymak, F., Ulker, E.D. & Tavşanoğlu C. (2012). Germination response of five eastern Mediterranean woody species to smoke solutions derived from various plants. Turk. J. Bot., 36, 480–487. DOI: 10.3906/bot-1111-12. Search in Google Scholar

Cherifi, K., Mehdadi, Z., Elkhiati, N., Latreche, A. & Ramdani M. (2017). Floristic composition of the mountainous massif of Tessala (Algerian West): Biodiversity and regressive dynamics of the forest ecosystem. Journal of Materials and Environmental Science, 8(9), 3184–3191. https://www.jmaterenvironsci.com/Document/vol8/vol8_N9/337-JMES-1881-Cherifi.pdf Search in Google Scholar

Dadach, M. & Mehdadi Z. (2018). Germination responses of Ballota hirsuta seeds under conditions of temperature, salinity and water stress. Hellenic Plant Protection Journal, 11, 34–39. DOI: 10.2478/hppj-2018-0004.10.2478/hppj-2018-0004 Search in Google Scholar

Dadach, M. & Mehdadi Z. (2021). Drought tolerance of three ethnomedicinal shrubs evaluated based on their seed germination rates at different drought levels induced by using polyethylene glycol (PEG6000). Folia Oecologica, 48(1), 49–54. DOI: 10.2478/foecol-2021-0006.10.2478/foecol-2021-0006 Search in Google Scholar

De Carvalho, J.N., Cavalcante, M.Z.B., De Carvalho, P.A., Pifano, D.S. & Rodrigues R.G. (2020). Ecophysiology germination of Senna uniflora seeds: species for recovery degraded areas. Journal of Seed Science, (42), e202042033. DOI: 10.1590/2317-1545v42238498.10.1590/2317-1545v42238498 Search in Google Scholar

De Souza, M.O., Pelacani, C.R., Willems, L.A.J., De Castro, R.D., Hilhorst, H.W.M. & Ligterink W. (2016). Effect of osmopriming on germination and initial growth of Physalis angulata L. under salt stress and on expression of associated genes. An. Acad. Bras. Ciênc., 88(Suppl. 1), 503–516. DOI: 10.1590/0001-3765201620150043.10.1590/0001-3765201620150043 Search in Google Scholar

Duan, D., Liu, X., Khan, M.A. & Gul B. (2004). Effects of salt and water stress on the seed germination of Chenopodium glaucum L. Pak. J. Bot., 36, 793–800. Search in Google Scholar

Duan, D.Y., Li, W.Q., Liu, X.J., Ouyang, H. & An P. (2007). Seed germination and seedling growth of Suaeda salsa under salt stress. Ann. Bot. Fenn., 44, 161–169. https://www.jstor.org/stable/23727638. Search in Google Scholar

El Ouali, L.A., El-Akhal, F., Maniar, S., Ez zoubi, Y. & Taghzouti K. (2016). Chemical constituents and Larvicidal activity of essential oil of Lavandula stoechas (Lamiaceae) from Morocco against the malaria vector Anopheles labranchiae (Diptera: Culicidae). International Journal of Pharmacognosy and Phytochemical Research, 8(3), 505–11. DOI: 10.25258/phyto.v9i07.11173.10.25258/phyto.v9i07.11173 Search in Google Scholar

El-Keblawy, A. & Al-Rawai A. (2005). Effects of salinity, temperature and light on germination of invasive Prosopis juliflora (Sw.) DC. J. Arid Environ., 61, 555–565. DOI: 10.1016/j.jaridenv.2004.10.007.10.1016/j.jaridenv.2004.10.007 Search in Google Scholar

El-Keblawy, A., Al-Shamsi, N. & Mosa K. (2018). Efect of maternal habitat, temperature and light on germination and salt tolerance of Suaeda vermiculata, a habitat-indiferent halophyte of arid Arabian deserts. Seed Sci. Res., 28(2), 140–147. DOI: 10.1017/S0960258518000144.10.1017/S0960258518000144 Search in Google Scholar

Ernst, M. (2017). Lavender. Lexington: Center for Crop Diversification, University of Kentucky College of Agriculture, Food and Environment. https://www.uky.edu/ccd/sites/www.uky.edu.ccd/files/lavender.pdf. Search in Google Scholar

Ez zoubi, Y., Bousta, D., El Mansouri, L., Boukhira, S., Siham, L., Achour, S. & Farah A. (2016). Phytochemical screening, anti-inflammatory activity and acute toxicity of hydro-ethanolic, flavonoid, Tannin and Mucilage Extracts of Lavandula stoechas L. from Morocco. International Journal of Pharmacognosy and Phytochemical Research, 8(1), 31–7. http://impactfactor.org/PDF/IJPPR/8/IJPPR,Vol8,Issue1,Article6.pdf. Search in Google Scholar

Ez zoubi, Y., Bousta, D. & Farah A. (2020). A Phytopharmacological review of a Mediterranean plant: Lavandula stoechas L. Clinical Phytoscience, 6, 9. DOI: 10.1186/s40816-019-0142-y.10.1186/s40816-019-0142-y Search in Google Scholar

Faisal, S., Mujtaba, S.M. & Mahboob A.W. (2019). Polyethylene Glycol mediated osmotic stress impacts on growth and biochemical aspects of wheat (Triticum aestivum L.). Journal of Crop Science and Biotechnology, 22(3), 213–223. DOI: 10.1007/s12892-018-0166-010.1007/s12892-018-0166-0 Search in Google Scholar

Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., Migdadi, H.M., Alghamdi, S.S. & Siddique K.H.M. (2017). Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol. Biochem., 118, 199–217. DOI: 10.1016/j.plaphy.2017.06.020.10.1016/j.plaphy.2017.06.020 Search in Google Scholar

Flowers, T.J. & Colmer T.D. (2008). Salinity tolerance in halophytes. New Phytol., 179, 945–963. DOI: 10.1111/j.1469-8137.2008.02531.x.10.1111/j.1469-8137.2008.02531.x Search in Google Scholar

Fyfield, T.P. & Gregory P.J. (1989). Effects of temperature and water potential on germination, radicle elongation and emergence of mungbean. J. Exp. Bot., 40, 667–674. DOI: 10.1093/jxb/40.6.667.10.1093/jxb/40.6.667 Search in Google Scholar

Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D. & Tran L.S. (2016). Drought stress tolerance in plants. Vol 2. Cham: Springer. DOI: 10.1007/978-3-319-32423-4.10.1007/978-3-319-32423-4 Search in Google Scholar

Huang, L., Liu, X., Wang, Z., Liang, Z., Wang, M., Liu, M. & Suarez D.L. (2017). Interactive effects of pH, EC and nitrogen on yields and nutrient absorption of rice (Oryza sativa L). Agric. Water Manag., 194, 48–57. DOI: 10.1016/j.agwat.2017.08.012.10.1016/j.agwat.2017.08.012 Search in Google Scholar

Kanawapee, N., Sanitchon, J., Lontom, W. & Threerakulpisut P. (2012). Evaluation of salt tolerance at the seedling stage in rice genotypes by growth performance, ion accumulation, proline and chlorophyll content. Plant Soil, 358, 235–249. DOI: 10.1007/s11104-012-1179-6.10.1007/s11104-012-1179-6 Search in Google Scholar

Khan, M.A. & Gulzar S. (2003). Germination responses of Sporobolus ioclados: a saline desert grass. J. Arid Environ., 53, 387–394. DOI: 10.1006/jare.2002.1045.10.1006/jare.2002.1045 Search in Google Scholar

Khan, M.A. & Zia S. (2007). Alleviation of salinity effects by sodiumhypochlorite on seed germination of Limonium stocksii. Pak. J. Bot., 39, 503–511. Search in Google Scholar

Krichen, K., Ben Mariem, H. & Chaieb M. (2014). Ecophysiological requirements on seed germination of a Mediterranean perennial grass (Stipa tenacissima L.) under controlled temperatures and water stress. S. Afr. J. Bot., 94, 210–217. DOI: 10.1016/j.sajb.2014.07.008.10.1016/j.sajb.2014.07.008 Search in Google Scholar

Lawrence, B. (2008). A review of the world production of essential oils. Perfumer & Flavorist 10, 1–16. https://www.perfumerflavorist.com/flavor/rawmaterials/natural/36327094.html Search in Google Scholar

Li, J., Yin, L., Jongsma, M. & Wang C. (2011). Effects of light, hydropriming and abiotic stress on seed germination, and shoot and root growth of pyrethrum (Tanacetum cinerariifolium). Industrial Crops and Products, 34, 1543–1549. DOI: 10.1016/j.indcrop.2011.05.012.10.1016/j.indcrop.2011.05.012 Search in Google Scholar

Li, R., Shi, F. & Fukuda K. (2010). Interactive effects of salt and alkali stresses on seed germination, germination recovery, and seedling growth of a halophyte Spartina alterniflora (Poaceae). S. Afr. J. Bot., 76, 380–387. DOI: 10.1016/j.sajb.2010.01.004.10.1016/j.sajb.2010.01.004 Search in Google Scholar

Lim, T.K. (2014). Lavandula stoechas. In: Edible Medicinal and Non Medicinal Plants. Springer, Dordrecht. DOI: 10.1007/978-94-017-8748-2_10.10.1007/978-94-017-8748-2_10 Search in Google Scholar

Llanes, A., Reinoso, H. & Luna V. (2005). Germination and early growth of Prosopis strombulifera seedlings in different saline solutions. World Journal of Agriculture and Soil Science, 1, 120–128. http://www.idosi.org/wjas/wjas1(2)/4.pdf. Search in Google Scholar

Ma, H., Yang, H., Lü, X., Pan, Y., Wu, H., Liang, Z. & Ooi M.K.J. (2015). Does high pH give a reliable assessment of the effect of alkaline soil on seed germination? A case study with Leymus chinensis (Poaceae). Plant Soil, 394, 35–43. DOI: 10.1007/s11104-015-2487-4.10.1007/s11104-015-2487-4 Search in Google Scholar

Machado, R.M.A. & Serralheiro R.P. (2017). Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae, 3(2), 30. DOI: 10.3390/horticulturae3020030.10.3390/horticulturae3020030 Search in Google Scholar

Martínez-Valderrama, J., Ibáñez, J., Del Barrio, G., Alcalá, F.J., Sanjuán,M.E., Ruiz, A., Hirche, A. & Puigdefábregas J. (2018). Doomed to collapse: why Algerian steppe rangelands are overgrazed and some lessons to help land-use transitions. Sci. Total Environ., 613–614, 1489–1497. DOI: 10.1016/j.scitotenv.2017.07.058.10.1016/j.scitotenv.2017.07.058 Search in Google Scholar

Medjebeur, D., Hannachi, L., Ali-Ahmed, S., Metna, B. & Abdelguerfi A. (2018). Effets de la salinité et du stress hydrique sur la germination des graines de Hedysarum flexuosum (Fabaceae) (effect of salt and water stress on seed germination of Hedysarum flexuosum (Fabaceae)). Revue d’écologie (Terre et Vie), 73(3), 318–329. http://documents.irevues.inist.fr/bitstream/handle/2042/68144/RevuedEcologie_2018_73_3_318.pdf?sequence=1. Search in Google Scholar

Mehdadi, Z., Bendimered, F.Z., Dadach, M. & Aisset A. (2017). Effects of temperature and salinity on the seeds germination of Retama raetam (Forssk.) Webb. scarified with sulfuric acid. Journal of Fundamental and Applied Sciences, 9(3), 1284–1299. DOI: 10.4314/jfas.v9i3.3.10.4314/jfas.v9i3.3 Search in Google Scholar

Michel, B.E. & Kaufmann M.R. (1973). The osmotic potential of polyethylene glycol6000. Plant Physiol., 51, 914–916. DOI: 10.1104/pp.51.5.914.10.1104/pp.51.5.914 Search in Google Scholar

Nedjimi, B. (2012). Rangeland improvement and management options in the arid steppes of Algeria. In M.D. Germanno (Ed.), Steppe ecosystems: dynamics, land use and conservation (pp. 157–170). New York: Nova Science Publishers. Search in Google Scholar

Nedjimi, B. (2017). How NaCl, Na2SO4, MgCl2 and CaCl2 salts affect the germinability of Pinus halepensis mill. Curr. Sci., 113, 2031–2035. DOI: 10.18520/cs/v113/i10/2031-2035.10.18520/cs/v113/i10/2031-2035 Search in Google Scholar

Nedjimi, B., Souissi, Z.E., Guit, B. & Daoud Y. (2020). Differential effects of soluble salts on seed germination of Marrubium vulgare L. Journal of Applied Research on Medicinal and Aromatic Plants, 17, 100250. DOI: 10.1016/j.jarmap.2020.10025010.1016/j.jarmap.2020.100250 Search in Google Scholar

Nedjimi, B. & Zemmiri H. (2019). Salinity Effects on Germination of Artemisia herba–alba Asso: Important Pastoral Shrub from North African Rangelands. Rangeland Ecology & Management, 72(1), 189–194. DOI: 10.1016/j.rama.2018.07.002.10.1016/j.rama.2018.07.002 Search in Google Scholar

Niu, X., Bressan, R.A., Hasegawa, P.M. & Pardo J.M. (1995). Ion homeostasis in NaCl stress environments. Plant Physiol., 109, 735–742. DOI: 10.1104/pp.109.3.735.10.1104/pp.109.3.735 Search in Google Scholar

Panuccio, M.R., Jacobsen, S.E., Akhtar, S.S. & Muscolo A. (2014). Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants, 6, plu047. DOI: 10.1093/aobpla/plu047.10.1093/aobpla/plu047 Search in Google Scholar

Paraskevopoulou, A.T, Karantzi, A.K., Liakopoulos, G., Londra, P.A. & Bert-souklis K. (2020). The Effect of Salinity on the Growth of Lavender Species. Water, 12, 618. DOI: 10.3390/w12030618.10.3390/w12030618 Search in Google Scholar

Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E. & Stievenard M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(6735), 429-436. DOI: 10.1038/20859.10.1038/20859 Search in Google Scholar

Qadir, M., Ghafoor, A. & Murtaza G. (2000). Amelioration strategies for saline soils: a review. Land Degrad. Dev., 11, 501–521. DOI: 10.1002/1099-145X(200011/12)11:6%3C501::AID-LDR405%3E3.0.CO;2-S. Search in Google Scholar

Qudir, M., Tubeileh, A., Akhtar, J., Larbi, A., Minhas, P.S. & Khan M.A. (2008). Productivity enhancement of salt-affected environments through crop diversification. Land Degrad. Dev., 19, 429–453. DOI: 10.1002/ldr.853.10.1002/ldr.853 Search in Google Scholar

Quézel, P. & Santa S. (1963). Nouvelle flore de l’Algérie et des régions désertiques méridionales. Paris: CNRS Press. Search in Google Scholar

Rasheed, A., Hameed, A., Gul, B. & Khan M.A. (2019). Perianth and abiotic factors regulate seed germination of Haloxylon stocksii—a cash crop candidate for degraded saline lands. Land Degrad. Dev., 30, 1468–1478. DOI: 10.1002/ldr.3334.10.1002/ldr.3334 Search in Google Scholar

Sarac, N. & Ugur A. (2009). The in vitro antimicrobial activities of the essential oils of some Lamiaceae species from Turkey. Journal of Medicinal Food, 12(4), 902–907. DOI: 10.1089/jmf.2008.0089.10.1089/jmf.2008.0089 Search in Google Scholar

Sardans, J., Urbina, I., Grau, O., Asensio, D., Ogaya, R. & Peñuelas J. (2020). Long-term drought decreases ecosystem and nutrient storage in a Mediterranean holm oak forest. Environ. Exp. Bot., 177, 104135. DOI: 10.1016/j.envexpbot.2020.104135.10.1016/j.envexpbot.2020.104135 Search in Google Scholar

Senbayram, M., Gransee, A., Wahle, V. & Thiel H. (2015). Role of magnesium fertilisers in agriculture: plant–soil continuum. Crop & Pasture Science, 66, 1219–1229. DOI: 10.1071/CP1510410.1071/CP15104 Search in Google Scholar

Shawl, A.S. & Kumar S. (2000). Potential of Lavender oil industry in Kashmir. J. Med. Aromat. Plant Sci., 22, 319–321. https://www.cabdirect.org/cab-direct/abstract/20013071609. Search in Google Scholar

Singh, S., Singh, V., Babu, GK., Kaul, V. & Ahuja P. (2007). Economic of lavender (Lavandula officinalis L.) in Himachal Pradesh. Journal of Non- Timber Forest Products, 14, 97−100. http://ihbt.csircentral.net/id/eprint/784. Search in Google Scholar

Sosa, L., Llanes, A., Reinoso, H., Reginato, M. & Luna V. (2005). Osmotic and specific ion effects on the germination of Prosopis strombulifera. Ann. Bot., 96, 261–267. DOI: 10.1093/aob/mci173.10.1093/aob/mci173 Search in Google Scholar

Steiner, F. & Zufo A.M. (2019). Drought tolerance of four vegetable crops during germination and initial seedling growth. BioScience Journal, 35(1), 177–186. DOI: 10.14393/BJ-v35n1a2019-41724.10.14393/BJ-v35n1a2019-41724 Search in Google Scholar

Tobe, K., Li, X. & Omasa K. (2004). Effects of five different salts on seed germination and seedling growth of Haloxylon ammodendron (Chenopodiaceae). Seed Sci. Res., 14, 345–353. DOI: 10.1079/SSR2004188.10.1079/SSR2004188 Search in Google Scholar

Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. In D. Häussinger & H. Sies (Eds.), Osmosensing and osmosignaling (pp. 419–438). San Diego: Elsevier Academic Press. DOI: 10.1016/s0076-6879(07)28024-3.10.1016/S0076-6879(07)28024-3 Search in Google Scholar

Ungar, I.A. (1996). Effect of salinity on seed germination, growth, and ion accumulation of Atriplex patula (Chenopodiaceae). Am. J. Bot., 83(5), 604–607. https://www.jstor.org/stable/2445919?seq=110.1002/j.1537-2197.1996.tb12745.x Search in Google Scholar

Vicente, M.J., Conesa, E., Álvarez-Rogel, J., Franco, J.A. & Martínez-Sánchez J.J. (2009). Relationships between salt type and seed germination in three plant species growing in salt marsh soils of semi-arid Mediterranean environments. Arid Land Res. Manag., 23, 103–114. DOI: 10.1080/15324980902813559.10.1080/15324980902813559 Search in Google Scholar

White, P.J. & Broadley M.R. (2003). Calcium in plants. Ann. Bot., 92, 487–511. DOI: 10.1093/aob/mcg164.10.1093/aob/mcg164 Search in Google Scholar

Yagmur, M. & Kaydan D. (2008). Alleviation of osmotic stress of water and salt in germination and seedling growth of triticale with seed priming treatments. African Journal of Biotechnology, 7, 2156–2162. https://www.ajol.info/index.php/ajb/article/view/58938 Search in Google Scholar

Yang, C., Chong, J., Li, C., Kim, C., Shi, D. & Wang D. (2007). Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil, 294, 263–276. DOI: 10.1007/s11104-007-9251-3.10.1007/s11104-007-9251-3 Search in Google Scholar

Zehra, A., Gul, B., Ansari, R., Alatar, A.A., Hegazy, A.K. & Khan M.A. (2013). Interactive effect of salt, light and temperature on seed germination and recovery of a halophytic grass–Phragmites karka. Pak. J. Bot., 0945, 725–736. Search in Google Scholar

Zeng, Y.J., Wang, Y.R. & Zhang J.M. (2010). Is reduced seed germination due to water limitation a special survival strategy used by xerophytes in arid dunes? J. Arid Environ., 74, 508–511. DOI: 10.1016/j.jaridenv.2009.09.013.10.1016/j.jaridenv.2009.09.013 Search in Google Scholar

Zhang, H., Irving, L.J., McGill, C., Matthew, C., Zhou, D. & Kemp P. (2010). The effects of salinity and osmotic stress on barley germination rate: sodium as an osmotic regulator. Ann. Bot., 106, 1027–1035. DOI: 10.1093/aob/mcq204.10.1093/aob/mcq204 Search in Google Scholar

Zhang, H., Tian, Y., Guan, B., Zhou, D., Sun, Z. & Baskin C.C. (2018). The best salt solution parameter to describe seed/seedling responses to saline and sodic salts. Plant Soil, 426, 313–325. DOI: 10.1007/s11104-018-3623-8.10.1007/s11104-018-3623-8 Search in Google Scholar

Zhang, H., Zhang, G., Lü, X., Zhou, D. & Han X. (2015). Salt tolerance during seed germination and early seedling stages of 12 halophytes. Plant Soil, 388, 229–241. DOI: 10.1007/s11104-014-2322-3.10.1007/s11104-014-2322-3 Search in Google Scholar

Zhao, Y., Lu, Z. & He L. (2014). Effects of saline-alkaline stress on seed germination and seedling growth of Sorghum bicolor (L.) Moench. Appl. Biochem. Biotechnol., 173, 1680–1691. DOI: 10.1007/s12010-014-0956-5.10.1007/s12010-014-0956-5 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo